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Abstract—As one of the most critical cloud products, the
stability of cloud servers is of paramount importance. Tra-
ditionally, stability is evaluated based on downtime, i.e., the
duration when cloud servers are unavailable. However, through
our extensive engagement in stability-related work, we have
discovered that only 27% of stability issues are related to
unavailability, which is in fact a subset of stability. Therefore,
in this paper, we propose the Comprehensive Damage Indicator
(CDI), comprising three distinct sub-metrics: the Unavailability
Indicator, Performance Indicator, and Control-plane Indicator.
The CDI is able to evaluate the stability of large-scale cloud
servers more comprehensively. In the production environment
of Alibaba Cloud, the CDI has been implemented on top of
Apache Spark. Over the past two years, we have employed the
CDI to guide our stability-related works, including architecture
comparison, potential problem detection and operation action
optimization. The overall results are very favorable. Taking Fiscal
Year 2024 as an example, the three sub-metrics have respectively
decreased by 40%, 80%, and 35%.

Index Terms—Stability, Evaluation Metric, Cloud Server,
AIOps

I. INTRODUCTION

Over the past few years, cloud computing has experienced
rapid development. The market size escalated to $560 billion
dollars in 2023 and is projected to continue with an annual
growth rate of about 20% [11]. Among the array of cloud
products, cloud servers (referred to as ECS at Alibaba Cloud,
EC2 at AWS, and VM at Azure) are one of the most significant
ones. They boast a substantial market presence and also act as
the foundation for various other cloud services. For instance,
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at Alibaba Cloud, most other cloud products are built on the
basis of ECS. Therefore, the stability of cloud servers is vital.

For cloud vendors, due to the extensive scale of cloud
servers under their management, failures are inevitable. To
mitigate the impact on customers and decrease operational
expenses, Artificial Intelligence for IT Operations (AIOps)
[12] [13] has been extensively employed, resulting in a lot
of research. Some studies concentrate on the construction
of monitoring systems [14], which provide data support for
operational tasks. Meanwhile, a significant amount of research
is directed toward the prediction and detection of failures,
including node failures [15] [16], disk failures [17] [18] [19]
[20], memory failures [21] and network traffic anomalies
[22] [23]. Moreover, failure recovery strategies [24] are also
explored in the face of severe infrastructure failures.

A. Problem

At Alibaba Cloud ECS, in a similar vein, we have con-
structed an AIOps system, CloudBot, to maintain stability.
It collects a vast amount of high-quality data and extracts it
into interpretable events, which then enables the automatic
execution of operation actions through the operation rule
matching.

We believe that the core of AIOPS is data-driven. In addition
to data mining, the role of quantitative evaluation cannot be
overstated, as it furnishes AIOPS with objective direction.
Therefore, a quantitative stability evaluation metric for large-
scale cloud servers is required to drive the evolution of stability
work.



B. Requirements

For cloud vendors such as Alibaba Cloud, stability evalua-
tion needs to satisfy the following requirements:

1) Interpretability: The purpose of the evaluation is to
provide guidance for the development of stability initiatives.
Considering that stability encompasses the collaboration of nu-
merous teams, an interpretable evaluation is more convincing
than a black-box one.

2) Cost-Effectiveness: Considering the vast scale of ECS,
a heavyweight evaluation would result in significant extra
resource usage. Ideally, this evaluation should rely on already
available, small-scale data sources, without the requirement
for additional data collection.

3) Non-Invasiveness: As the cloud servers are entirely
under customer ownership, we cannot operate them without
authorization. Thus, any form of intrusive evaluation is unac-
ceptable.

4) Comprehensiveness: The cloud server is a complex
product that integrates capabilities such as computing, storage,
and networking to deliver services in the form of virtual
machines (VMs). Customers, in turn, use VMs for a diverse
range of business purposes. Hence, the stability evaluation
should be comprehensive.

C. Intuition

Existing evaluation methods can generally be divided into
two categories. The first category measures stability by exe-
cuting benchmarks within VMs [25]. However, this approach
is intrusive and generates considerable computational costs,
rendering it unsuitable for large-scale evaluation. Therefore,
cloud vendors typically use another method based on down-
time [4]. This method focuses on the duration (or frequency)
of cloud server unavailability, meeting the requirement of cost-
effectiveness and non-invasiveness.

However, in our long-term work on ECS stability, we find
that many issues and incidents are unrelated to unavailability,
but still have a severe impact on stability. As discussed in
Section III-A, our insight is that stability is not equivalent
to downtime.

In Section III-B, we provide a definition of cloud server
stability and categorize the stability issues into unavailabil-
ity, performance, and control-plane issues. Grounded on this
definition, we introduce the Comprehensive Damage Indicator
(CDI), which extends the stability evaluation from unavail-
ability to all three categories. Meanwhile, CDI calculation
is based on interpretable intermediate events from CloudBot,
considering the varying duration and impacts of different
events. Therefore, CDI more comprehensively mirrors the
complication of cloud servers and offers stronger guidance in
the evolution of stability.

D. Contributions

Our major contributions are summarized as follows:
(1) Leveraging our extensive experience in ECS stability, we

discover that downtime alone insufficient for a comprehensive
stability evaluation. We define the stability of cloud servers

TABLE I: Terminology Explanations

Term Explanation

Elastic Compute Ser-
vice (ECS)

Product name of cloud servers in Alibaba
Cloud.

Virtual machine (VM) Software emulation of a physical computer.
Customers utilize computing services in the
form of VMs.

Node controller (NC) Physical machine to host VMs.
Internet Data Center
(IDC)

Facility used to house physical server sys-
tems.

Event Abstraction of the cloud server’s status. It
is interpretable and often corresponds to
potential stability issues.

Operation rule Rule that defines the combination of events
and the corresponding actions that need to
be executed.

Operation action Action executed after the match of operation
rules. It is employed for mitigating risks or
recovering services.

Cloud disk Storage disk on the cloud which provides
storage service to ECS.

as Definition 1, explicitly stating that it encompasses three
aspects: unavailability, performance, and control-plane. This
definition provides a more holistic view of system stability,
which is often overlooked in traditional evaluations.

(2) We propose Comprehensive Damage Indicator (CDI),
which is the first comprehensive quantitative stability eval-
uation metric for large-scale cloud servers, to the best of
our knowledge. This metric comprises three sub-metrics: the
Unavailability Indicator, Performance Indicator, and Control-
Plane Indicator. Unlike existing methods such as Downtime
Percentage, CDI provides a more comprehensive and nuanced
evaluation of system stability by considering multiple dimen-
sions.

(3) CDI has been deployed in various domains for over two
years within Alibaba Cloud ECS. It is utilized to compare the
stability of two different architectures and to detect potential
issues. Besides, together with A/B test, CDI is also employed
to identify the optimal operation actions.

(4) Guided by CDI, the stability of Alibaba Cloud ECS
has shown significant improvement. Specifically, in Financial
Year 2024, there was a 40% reduction in the Unavailability
Indicator, an 80% reduction in the Performance Indicator and
a 35% reduction in Control-Plane Indicator.

The frequently used terms in the proposal are listed in
TABLE I.

II. BACKGROUND OF CLOUDBOT

Alibaba Cloud ECS maintains an infrastructure that includes
more than a million physical servers and tens of millions of
virtual machines. As the responsible team of stability, we
have built a system called CloudBot. Utilizing large-scale,
highly accurate monitoring data, CloudBot conducts real-time
detection and analysis of the stability of both physical and
virtual machines, and automatically executes operation actions
to ensure the stability of cloud services. In this section, we will
introduce the CloudBot system.



Metric

                     12:17     Time

read_latency

12:00:19 Packet sent successfully via eth0

Log

12:07:44 Network connection on eth0 is stable

12:16:28 eth0 NIC Link is Down ID: xxx
Device: network cable
Status: repaired
Update time: 09:33:12
...

Ticket

Switch

NC NC ...

Topology ...
Data Collector

slow_io 

[critical]

nic_flapping

[fatal]

live_migration nc_lock repair_request

net_cable_repaired

[normal]
Event Extractor ...

nic_error_cause_slow_io:
slow_io and nic_flapping

nic_error_cause_vm_hang:
vm_hang and nic_flapping ...Rule Engine

Operation
Platform

...

reboot_in_place fpga_soft_repair cold_migration disk_clean

Fig. 1: Example process workflow of CloudBot

A. Overview

CloudBot is designed to reduce the workload of engineers
by automating the operations of virtual and physical machines.
Example 1 is provided to demonstrate how CloudBot works.

Example 1 (NIC). Fig. 1 illustrates the architecture of Cloud-
Bot and the exemplary process workflow for addressing a net-
work interface card (NIC) issue. Data Collector (Section II-B)
gathers various modalities of data, including metrics, logs,
tickets, and topology, to support the automated operation of
CloudBot. For example, the read latency metric depicted in
the figure is a critical indicator of cloud disk I/O performance.
To identify the cause of a sudden increase in latency, we collect
various types of data such as NIC logs, IDC tickets of cables,
and network topology.

After that, Event Extractor (Section II-C) transforms the
multi-modal raw data into a unified format of events. For
instance, at 12:17, the recent measurements from the metric
read latency for a VM meets a sudden spike. CloudBot
extracts it as a slow io event with a critical level. Mean-
while, according to a regular expression defined by experts,
the log entry eth0 NIC Link is Down at 12:16:28 is
recognized as a nic flapping event, while other two entries
are discarded. Besides, the IDC ticket is transformed to a
net cable repaired event.

Following event extraction, Rule Engine (Section II-D) is
utilized for matching rules. The co-occurrence of slow io
event and nic flapping event precisely matches the operation
rule nic error cause slow io. Besides, due to the absence
of vm hang event, nic error cause vm hang rule cannot be
matched with nic flapping event only.

Finally, Operation Platform (Section II-E) manages the
execution of all operation actions in CloudBot system. The
matched nic error cause slow io rule triggers three of the
actions. In detail, the VM undergoes a live migration, mov-
ing to a new physical machine without a shutdown. At the
same time, a ticket to IDC engineers is created for repair
request. Throughout the repair duration, the physical machine
is locked, preventing the VM creation on it and migration to
it, keeping other VMs from potential issues.

B. Data Collector

Data Collector, a self-developed lightweight component
based on eBPF [26], is the cornerstone of CloudBot. This
component enables us to execute fine-grained data collection
facilitating the precise detection and diagnosis of problems.
For instance, in Case 5 (detailed in Section VI-B), we collect
the allocation relationships between each VM and physical
core, which supports more efficient resource management. Ad-
ditionally, for power consumption issues addressed in Case 7
(detailed in Section VI-C), we collect power metrics across
a spectrum of granularity, including the racks, machines,
hardware components, CPU sockets, and individual physical
cores.

C. Event Extractor

CloudBot interfaces with hundreds of diverse data sources,
each generating substantial quantities of heterogeneous data.
Event Extractor standardizes the data into a consistent event-
based format. An event describes an anomalous objective
phenomenon, but does not necessarily point to a real issue. For



TABLE II: Fields of Event

Field Description

name interpretable name of the event, e.g., slow io
time timestamp when the event is extracted
target target of the event, often a VM or a physical machine
expire interval time interval between the extraction and the expiration

of the event
level severity level of the event determined by the target,

e.g., fatal, critical, warning

example, slow io could be caused by an excessive workload
on the VM. There are three ways to extract events as follows:

• Expert rules: Based on an understanding of the under-
lying principles, experts can manually formulate rules to
extract events from original data. This approach results
in a notably high degree of precision. The transition from
logs and metrics to events, illustrated in Fig. 1, serves as
an exemplar of such expertly devised rules.

• Statistic-based methods: Statistical methods are adept
at mining data attributes while providing substantial in-
terpretability. For instance, we combine BacktrackSTL
[27] and EVT [28] to detect anomalies within metric time
series, which are then considered as events.

• Deep learning algorithms: Deep learning techniques ex-
cel at extracting sophisticated, high-level events, offering
the potential to outperform human experts. Consequently,
in particularly challenging situations like server failure
prediction [7] [8], we explore the use of neural networks
to detect machines that may be at risk, with the aim of
reducing the impact of failures on customers.

The core purpose of extraction is to reduce the complexity
of the CloudBot system. Firstly, the extraction standardizes
the data modals, thus circumventing the need to handle multi-
modal data. Secondly, since the vast majority of machines run
normally and are not the focus of event extraction, the event
data volume is greatly reduced from hundreds of TB to GB per
day, significantly enhancing information density. In addition,
as interpretable intermediary outcomes, these events also aid
in the debugging and update of the CloudBot system.

After extraction, we obtain a series of events for rule match-
ing. Each event is uniquely identified by its name, extraction
time, and associated target. To manage the quantity of events
effectively, each one is assigned an expiration interval, which
is predefined and specific to the event name. In addition,
each event is assigned a level that indicates its severity. It
is crucial to acknowledge that events with identical names
may correspond to varying levels of severity, depending on
the particular conditions of the target. TABLE II documents
all the fields of the events.

D. Rule Engine

In CloudBot, an operation rule contains a readable boolean
expression and several operation actions. When the concurrent
occurrence of events fulfills the expression, the operation
rule is considered matched. Consequently, the corresponding
actions are submitted to Operation Platform for execution.

The establishment of operation rules is a combination of
expert knowledge, algorithmic insights, and empirical tests. A
portion of the rules are crafted manually by experts. Based on
association mining algorithms [29], we can optimize existing
rules and discover new rules. Furthermore, as described in
Section VI-D, A/B test [30] can further contribute to the rule
formulation process.

E. Operation Platform

Since operation actions have a direct effect on virtual and
physical machines, and consequently on customers, Operation
Platform is designed to centrally control all such actions.
This platform determines the execution order for all submitted
operation actions and discards the conflicting ones. The action
categories are shown in Table III.

F. Discussion on Operation Accuracy

1) Automatically inferred events: CloudBot generates a
large volume of events, including those from statistical and
deep learning methods. Since a single event only captures one
aspect of the cloud server’s status, operation actions based
solely on individual events may lead to significant noise, i.e.,
incorrect operation actions.

Thus, the concept of operation rule is introduced to reduce
noise, which combines multiple events with meta-information
such as product configurations. For example, CPU contention
on a shared VM is consistent with the product definition [1]
and needs no actions.

Besides, the trend analysis of events can also be utilized
for noise reduction. Specifically, we introduce the event-level
CDI in Section VI-C to reflect its trend. Even though a single
event may not correspond to a rule, anomalous fluctuations in
trends can also indicate potential issues.

2) Missing Operation: Due to our limited understanding
of the cloud server system, missing operation is a rare but
inevitable issue. A small number of missing operations can
only be identified through customer complaints. However,
for the unexpected surge in events and the potential batch
of missing operations it may trigger, we establish an alert
mechanism. If the event is unrelated to user behavior or if
the surge is influenced by multiple customers, engineers are
requested to intervene immediately. Additionally, we regularly
review and update the rules to ensure that they cover a
wider range of failure conditions and reduce the likelihood
of missing operations.

III. MOTIVATION

With the development of stability works including the
CloudBot system, evaluating its effectiveness is imperative. In
other word, we have to evaluate the stability of large-scale
cloud servers. Traditionally, the industry has relied on the
server downtime for stability evaluation. This section provides
a contemplation on the adequacy of this conventional metric.



TABLE III: Operation actions in CloudBot

Type Example Actions

VM operation Live migration (migrate a VM without shut-
down), in-place reboot (reboot a VM on the same
NC), cold migration (reboot and migrate a VM)

NC software repair Disk clean, memory compaction, process repair
(restart or update the process)

NC hardware repair device disable (disable the specific device), repair
request (create a ticket to IDC engineers for
repair), FPGA soft repair (repair the error in
FPGA with software or configurations)

NC control NC reboot, NC lock (halt the creation or mi-
gration of new VMs to NC), NC decommission
(remove NC from the production environment)

A. Stability ̸= Downtime

When discussing stability, it is often equated with the
Downtime Percentage. This metric quantifies the proportion
of time during which a cloud server is unavailable relative to
the total service time. As an intuitive measure, it is extensively
utilized within the industry.

Expanding on this, Azure proposes the concept of Annual
Interruption Rate [4]. This approach posits that long-duration
of unavailability are rare, and thus, it substitutes the duration of
unavailability with the frequency to evaluate customer impact
better. Essentially, Annual Interruption Rate remains focused
on the unavailability of cloud servers.

However, in our daily work, the customer-reported stability
issues are not limited to unavailability. The following is a case.

Case 1. A customer once submitted a support ticket calling
for an investigation. They reported that the latency of an API
running on a specific VM had markedly increased during a
designated period. Our investigation revealed that the issue
stemmed from a recent change. Since the customer’s business
was more sensitive than we had anticipated, a change we
had expected to be non-disruptive actually impacted their
operations. As a result, we immediately halted the change
and reclassified it as disruptive. Subsequent changes were only
deployed within a window established in concordance with the
customer, to prevent the recurrence of such impacts.

Besides, issues other than unavailability can also result in
serious incidents. The incident on November 12, 2023, serves
as a prime example [31].

Case 2. On November 12, 2023, Alibaba Cloud experienced
a serious incident. Faulty logic within the AccessKey system
led to an incomplete whitelist, causing the requests sent
from valid sources failed to pass the authentication process.
From the data plane, although some encrypted disks were
unavailable, most of the existing cloud servers continued to
run normally. However, the control plane has encountered
more severe issues, including the loss of monitoring metrics
for cloud servers, inability to log in to the console, and failures
of management API calls. This incident occurred in the early
evening, which is the business peaks for many customers,
leading to a significant loss in their business.

Control-Plane (29%)

Performance (44%)

Unavailablity (27%)

Fig. 2: Distribution of tickets related to ECS stability

In summary, a conclusion can be drawn that stability is
not downtime. Therefore, an in-depth thinking to stability is
necessary.

B. Cloud Server Stability

Based on our long-term practice in the field, we provide the
following definition for the stability of cloud servers:

Definition 1. The stability of cloud servers is defined as its
capacity to deliver and manage computational resources in a
continuous and consistent manner.

According to the above definition, we discover that unavail-
ability disrupts the continuity of computational power, which is
actually just a subset of stability. Meanwhile, stability concerns
also involve performance issues and control-plane issues.

Performance issues undermine the consistency of compu-
tational power, including both temporal consistency of a single
VM and the cross-VM consistency among VMs with identical
specifications. They are common in our routine work, often
associated with changes, hardware, and various other factors.
For example, Case 1 shows a performance issue.

Control-plane issues obstruct the management of computa-
tional power, such as starting, stopping, releasing, or resizing
VMs, directly affecting the customers’ cloud usage experience.
Moreover, the impact of control-plane issues can be global,
such as in Case 2.

Quantitatively, we categorize all tickets related to ECS
stability from January 2023 to June 2024. As depicted in
Fig. 2, tickets pertaining to unavailability constitute merely
27%, whereas those concerning performance and control-plane
issues account for 44% and 29%, respectively. It is evident
that an evaluation metric centered solely on unavailability
cannot fully represent stability. Therefore, to better guide
efforts in enhancing stability, it is crucial to employ a more
comprehensive metric in place of downtime.

C. Rethink the Events in CloudBot

First, let us revisit the computation of Downtime Percentage
in CloudBot system. This calculation is based solely on
downtime events, which represent only a subset of all possible
events. Therefore, it is a natural consideration to include all
events in the stability evaluation.

Based on this idea, we find that CloudBot events align
perfectly with the requirements presented in Section I-B. As
an interpretable intermediate representation, they comprehen-
sively reflect the various stability issues of cloud servers. By



reusing these events to define stability evaluation metrics, it
is possible to evaluate large-scale cloud servers in a low-cost
and non-intrusive manner.

Therefore, we propose a novel comprehensive stability eval-
uation metric based on CloudBot events, which we utilize to
guide the evolution of stability. In Sections IV-VI, we provide
a detailed explanation of its definition, implementation, and
application.

IV. COMPREHENSIVE DAMAGE INDICATOR

Building on the motivation presented in Section III, we
employ CloudBot events to define the evaluation metric for
large-scale cloud server stability, named Comprehensive Dam-
age Indicator (CDI). In this section, we provide a detailed
introduction of CDI.

A. Overview

As discussed in Section III-C, CloudBot events form the
foundation of CDI. In the computation process, we represent
an event e as e = (ts, te, w). Here, ts and te denote the start
and end timestamps of the event, as delineated in Section IV-B,
while w represents the weight discussed in Section IV-C. The
method for calculating CDI based on these events is then
presented in Section IV-D.

Additionally, since events can be categorized into three
types in Section III-B, our CDI can also be divided into the
following three sub-metrics. The calculation process for each
is identical, and the only difference lies in the specific events
they rely on.

• Unavailability Indicator: Unavailability issues denote
situations where a VM is completely unavailable to
provide computational services, including VM crashing
or stalling. Unavailability Indicator quantifies the ratio of
the unavailability duration to the total service time.

• Performance Indicator: Performance issues refer to sit-
uations where a VM performs below expectations though
it is still available, including slow IO of cloud disks or
frequent network packet loss, etc. Performance Indicator
quantifies the ratio of the weighted performance impact
duration to the total service time. The weights are de-
termined by the specific impact level of the performance
issues.

• Control-Plane Indicator: Control-plane issues refer to
the inability to execute control operations on a VM, in-
cluding failures to start, stop, or release the VM. Control-
Plane Indicator quantifies the ratio of the weighted uncon-
trollability duration to the total service time. The weights
are determined by the specific impact level of the control-
plane issues.

It should be noted that the aforementioned three indicators
quantify the impact on three major categories of stability
issues, distinct from specific metrics like CPU and IO. As
described in Section II-C, fluctuations in CPU and IO metrics
will be abstracted as events, and thus, will ultimately be
incorporated into the CDI.

t1-d1 t1 t2 t3 t4 t5

e1 e2

ddos_blackhole_add ddos_blackhole_delslow_io

Fig. 3: Example of event period

B. Event Period

Events can be categorized into two types: stateless events
and stateful events. The method for calculating their period
differs.

1) Stateless Event: Stateless events are independent of each
other. A single event represents a specific complete issue
during a certain period of time. To simplify the CloudBot
system, the majority of events are designed to be stateless.
In this case, we consider the event’s timestamp as its end
time and calculate the start time by tracing backward from
the duration.

Some of these events are directly associated with estimated
duration. For instance, the event qemu live upgrade event
depicts the live upgrade of the virtualization component
QEMU [32], and the pertinent logs precisely log the impact
duration in milliseconds.

However, most stateless events are extracted without esti-
mated duration. For instance, the event slow io indicates that
the read latency of VM exceeds a threshold. These types of
events are associated with a small time window, e.g., 1 minute.
When a VM is persistently compromised, the event will be
produced consecutively. Hence, the duration of the event can
be approximated using the size of the time window.

2) Stateful Event: Some events from other teams are
stateful. They have dependencies among them, representing
the start, end, and other states of an issue based on mul-
tiple detailed events. For example, ddos blackhole event
from security teams is represented by two detailed events,
ddos blackhole add and ddos blackhole del. Therefore, the
start time of ddos blackhole event is the timestamp of
ddos blackhole add, and the end time is the timestamp of
ddos blackhole del.

In practice, each start event is paired with the nearest sub-
sequent end event. To mitigate the impact of dirty data, among
all consecutive occurrences of events, only the event with the
earliest timestamp is preserved. This procedure ensures that
each start event has a unique end event as its pair.

Example 2 (Event Period). Suppose the events of a VM are
illustrated in Fig. 3. Each event is associated with a timestamp.
e1 is a slow io event ends at t1. Given the duration of slow io
is d1, the start time of e1 is t1 − d1.

For ddos blackhole event, we first filter out consecutive oc-
currences of the same event. Specifically, ddos blackhole add
events at t2 and t3 are redundant. Thus, the one at t3 is
discarded. Similarly, ddos blackhole del at t5 is also dis-



carded. After filtering, it is clear that the VM experiences a
ddos blackhole event e2. It starts at t2 and ends at t4.

C. Event Weight

When an unavailability issue occurs, the VM will be com-
pletely unavailable to provide computing services. However,
this is not the case for performance and control-plane issues.
For example, a GPU drop leads to a significant loss of
computing power, while slight network packet loss may remain
undetected by the customer. It is evident that the seriousness
of the former greatly outweighs that of the latter. Therefore,
it is necessary to allocate varying weights to distinct events to
illustrate this difference in severity.

Based on expert knowledge, during the event extraction
process in Section II-C, we have already defined a level for
each event, e.g., fatal, critical, warning, etc. Suppose that
there are m different levels of increasing severity, the weight
assigned to the i-th level is as follows:

li =
i

m
, 1 ≤ i ≤ m (1)

However, the severity as perceived by experts may not nec-
essarily equate to that perceived by customers. Consequently,
we gather the number of related tickets for each event over
the previous year to determine weights reflective of customer
perception. The intuitive idea is that the quantity of complaint
tickets has a positive correlation with the impact on customers.
Therefore, we rank the events based on the related ticket
counts, and proportionately distribute them into several levels
based on their ranking positions. Similarly, among n levels
order by ascend ticket counts, the j-th one has the following
weight:

pj =
j

n
, 1 ≤ j ≤ n (2)

Finally, we employ the Analytic Hierarchy Process (AHP)
[3] to integrate the weights of various perspectives. It is a
multi-criteria decision-making approach. This method con-
ducts pairwise qualitative comparisons of the importance
of perspectives, constructing a judgment matrix, and subse-
quently calculating the proportion of each perspective in the
final weight distribution. Suppose the event is in the i-th
expert level and j-th customer level, with the corresponding
proportion α1 and α2 from AHP, the final weight is as follows:

w =
α1li + α2pj
α1 + α2

(3)

In future work, it is possible to include a broader array of
perspectives, such as the sensitivity of customers to events.
AHP can also be applied to integrate these additional perspec-
tives.

Example 3 (Event Weight). Suppose there is an event whose
level is critical with m = n = 4 and α1 = α2 = 0.5.
First, since critical is the third level of severity in expert
perception, the expert weight is l3 = 3/4 = 0.75. Then,
suppose the related ticket counts of this event is higher than
43% of all events, it falls into the second level. Thus, the

Algorithm 1: CDI Calculation
Data: VM events e[1 . . . n], service period Ts to Te

Result: CDI of the VM in the service period Q
1 W [Ts . . . Te]← 0;
2 for i← 1 to n do
3 (ts, te, w)← e[i];
4 W [ts . . . te]← max(w,W [ts . . . te]);
5 end
6 Q← 1

Te−Ts

∑Te

t=Ts
W [t] ·∆t;

7 return Q

customer weight is p2 = 2/4 = 0.5. At last, the final weight
is w = α1l3+α2p2

α1+α2
= 0.625.

D. Indicator Calculation

The CDI of a particular VM in a specific service period
depends on all associated events. Overlaps can occur between
events. When multiple events coincide within a particular time
segment, the segment weight is the maximum value of the
weights of these events. Algorithm 1 illustrates the procedure
for computing the CDI.

For a collection of VMs, since events among VMs do not
overlap, the CDI for the entire collection can be straightfor-
wardly calculated by aggregating the CDIs of all individual
VMs. The formula is as follows:

Q =

∑
i∈V TiQi∑
i∈V Ti

(4)

Here, V represents the collection of VMs. Moreover, Ti

denotes the service time, and Qi signifies the CDI of VM i.
To elucidate the calculation process, the Performance Indicator
is employed as an example to illustrate the steps involved in
computing the CDI in Example 4.

Example 4 (Indicator Calculation). Suppose TABLE IV lists
the performance events of 3 VMs on a certain day. For VM
1, there are two non-overlapped packet loss events, both of
which lasts 2 minutes with weight w = 0.3. Thus, its CDI is
as follows:

Q1 =
2 ∗ 0.3 + 2 ∗ 0.3

60
=

1.2

60
= 0.020

Similarly, the CDI of VM 2 is Q2 = 5 ∗ 0.6/1440 = 0.002.
For VM 3, it is sure that the weight is w = 0.5 at 08:08-

08:10 and w = 0.6 at 08:12-08:15. Since the slow io event is
overlapped with the vcpu high event at 08:10-08:12, the final
weight is the higher one, i.e., w = 0.6. Therefore, the CDI of
VM 3 is as follows:

Q3 =
2 ∗ 0.5 + 2 ∗ 0.6 + 3 ∗ 0.6

1000
=

4

1000
= 0.004

Furthermore, we can also calculate the Performance Indi-
cator for all three VMs:

Qall =
60 ∗ 0.020 + 1440 ∗ 0.002 + 1000 ∗ 0.004

60 + 1440 + 1000
= 0.003



TABLE IV: Example of CDI Calculation

VM Service Time Event Period Weight CDI

1 60min packet loss 10:08-10:10 0.3 0.020packet loss 10:10-10:12 0.3

2 1440min vcpu high 13:25-13:30 0.6 0.002

3 1000min
slow io 08:08-08:10 0.5

0.004slow io 08:10-08:12 0.5
vcpu high 08:10-08:15 0.6

All 2500min - - - 0.003

V. IMPLEMENTATION

Since 2022, the CDI has been deployed within Alibaba
Cloud ECS to steer our stability efforts. The CDI is computed
on a daily basis as depicted in Fig. 4.

In CloudBot, the original event data is stored in the Simple
Log Service (SLS) [33] to facilitate rapid searching and is
subsequently synchronized to a MaxCompute [6] table for
long-term storage. Additionally, a ticket classification model
is deployed on Platform For AI (PAI) [34]. Based on the
classification results and expert insights, the configurations in
MySQL [35] are adjusted as detailed in Section IV-C.

Following that, we developed an Apache Spark [36] ap-
plication for the computation of the CDI. This application
processes events from the MaxCompute table and configura-
tion data from MySQL, yielding two MaxCompute tables. The
first table presents the Unavailability Indicator, Performance
Indicator, Control-Plane Indicator, and service time for each
VM. The second table offers a granular perspective at the
event level, with each row recording the CDI of an event on
a specific VM.

The input data for the application is about 10 GB volume.
We allocate 100 executor instances for this application, each
with 8 cores and 12GB of memory. The entire time overhead
is around 2 hours, with the majority of the time spent on
data cleaning, filtering, integration, and writing. The core CDI
computation time is around 500 seconds.

Ultimately, the CDI is visualized on our internal Business
Intelligence (BI) system. This system facilitates SQL queries.
Utilizing the two aforementioned tables as the foundational
data, it is able to aggregate the CDI across diverse dimensions
in accordance with Formula 4. For example, we can concen-
trate on the global CDI and, if required, drill down to the
region, availability zone, or even the cluster level.

VI. APPLICATION

A. Stability Evaluation

The primary application of the CDI is the quantitative eval-
uation of the stability of the Alibaba Cloud ECS production
environment. Incidents are a critical factor in compromising
stability. Based on the CDI, it is able to quantify and visually
demonstrate the impact of incidents, as exemplified by the
three incidents [37] [38] [39].

Case 3. Three incidents are considered as examples: The first
occurred in Availability Zone C of the Singapore region on

events

MaxCompute Table

MaxCompute Table
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Business Intelligence System
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CDI
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Fig. 4: Deployment of CDI calculation

20240425 20240702 20250107 Daily
0.0
0.2
0.4
0.6
0.8
1.0

Va
lu

e

CDI-U CDI-P CDI-C AIR DP

Fig. 5: Stability evaluation on selected incidents

April 25, 2024, impacting multiple products, including ECS.
The second took place in Availability Zone N of the Shanghai
region on July 2, 2024, due to network access abnormalities.
The third occurred in the Shanghai region on January 7, 2025,
leading to the inability to purchase or modify ECS instances.

Fig. 5 illustrates the CDI, Annual Interruption Rate (AIR)
and Downtime Percentage (DP) on the incident days (named
20240425, 20240702 and 20250107 respectively) compared
to that without incidents (named Daily). Due to the data
security policies of Alibaba Cloud, all CDI, AIR and DP
values referenced in this figure and the subsequent text are
normalized.

It can be observed that AIR and DP exhibited very signif-
icant changes during the 20240425 and 20240702 incidents,
compared to normal times. However, since the 20250107
incident did not affect the existing ECS instances, these indi-
cators could not reflect the damage to stability caused by this
incident. In contrast, CDI effectively reflected the impact of
all three incidents. The first two were reflected in the unavail-
ability indicator (CDI-U), while the last one was captured in
the control-plane indicator (CDI-C). Therefore, CDI provides
a more comprehensive evaluation of ECS stability.

Beyond incidents, the CDI is crucial for quantifying overall
daily stability. It provides directed guidance for stability-
related work. To reduce the daily CDI, many strategies are
used. For Unavailability Indicator, fault prediction techniques
[7] [8] based on deep learning is utilized, circumventing
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Fig. 6: Overall CDI from April 2023 to March 2024

the hardware unavailability by migration in advance. For
Performance Indicator, virtualization technologies [9] are op-
timized to reduce performance degradation. For Control-Plane
Indicator, we redundantly deploy significant components [10]
to achieve high availability. The CDI curves serve to quantify
the impact of these measures, enabling stability engineers to
monitor stability trends and evaluate the efficacy of distinct
stability strategies.

Case 4. In the evaluation of stability efforts of Fiscal Year
2024 (April 2023 to March 2024), the CDI curve played a
significant role. Fig. 6 displays the annual smoothed overall
CDI curve for Fiscal Year 2024. The curve has been adjusted
to exclude the impact of particularly significant incidents.

During Fiscal Year 2024, the stability of ECS experienced
a significant improvement. The Unavailability Indicator, Per-
formance Indicator, and Control-plane Indicator decreased by
approximately 40%, 80%, and 35%, respectively. Among them,
the Performance Indicator saw the largest reduction, primarily
because its governance work was at an early stage, which
typically yields more substantial benefits.

B. Architecture Comparison

Confronted with intense market competition, our techno-
logical architecture is in a state of constant evolution. Despite
the existence of the impossible trinity in architectural design,
we still strike a balance across various dimensions, including
stability, security, performance, cost, and elasticity. During
this process, the CDI is utilized to compare the stability
of two architectures. Specifically, we expect the CDI of
the new architecture to be comparable with that of the old
one. Consequently, we persistently monitor the CDI for both
architectures. Once a significant discrepancy arise, immediate
action was taken to avert any substantial impact on stability.

Case 5. In ECS, VMs are categorized into dedicated and
shared types. Dedicated VMs are assigned to specific physical
cores for exclusive resource use, ensuring consistent perfor-
mance. In contrast, shared VMs are allocated across multiple
cores, sharing resources with other users, which can lead to
performance degradation during peak times.

As shown in Fig. 7 (a) and (b), in the homogeneous-
deployment architecture, dedicated and shared VMs are hosted
on separate physical machines, creating two independent
resource pools. This can result in inefficiencies, such as

(a) Homogeneous dedicated VM (b) Homogeneous shared VM

(c) Hybrid VM

CPU Contention

(d) Hybrid VM with issue

Fig. 7: Schematic diagram of architectural transition
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Fig. 8: Performance Indicator of deployment architectures

shared VMs being fully utilized while dedicated VMs have
idle resources.

To improve elasticity and cost efficiency, we transitioned to a
hybrid-deployment model, where both VM types are deployed
on the same physical machine but on different cores, as shown
in Fig. 7 (c). This merges the resource pools without affecting
stability.

During the transition, we tracked the CDI of VMs within
both architectures. Fig. 8 displays their Performance Indi-
cators over a period of time. Initially, there was minimal
variance, so we expanded the hybrid deployment. However,
from Day 13, the Performance Indicators of the hybrid-
deployment increased rapidly, prompting us to halt further
expansion and investigate.

We found that the issue was due to an incompatibility be-
tween the hybrid architecture and certain virtualization com-
ponents on a specific machine model. As shown in Fig. 7 (d),
this caused CPU contention when the core allocation ranges
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of shared and dedicated VMs overlapped.
Given the complexity of fixing this, we temporarily avoided

hybrid deployment on the affected machine model to sidestep
the problem. We locked all of the affected physical machines,
migrated the VMs, and steadily rolled them back to the
homogeneous-deployment architecture. The Performance In-
dicators differences decreased, and by Day 28, the curves
converged, indicating the issue was mitigated. This allowed
us to continue with our architectural evolution.

C. Potential Problem Detection

The release of changes is a significant contributor to stability
problems. Despite having implemented a system for gradual
releases and circuit breaking, this system falls short in rec-
ognizing non-fatal problems that require an extended period
to emerge. In these situations, the CDI offers valuable aid in
detecting such potential problems.

The CDI and its associated drill-down curves are expected to
change gradually. Therefore, a sudden and sharp change within
a short period may signal a potential problem, necessitating
further investigation. Specifically, in addition to the original
CDI curve, we also pay attention to the drill-down curves
at the event level. The computation is still consistent with
Algorithm 1, except that the input is narrowed down from all
events to specific events. For these curves, we apply techniques
like K-Sigma and EVT [28] for detecting anomalies, and we
leverage root cause analysis algorithms [40] to aid engineers
in identifying the source of the problems. A specific example
follows:

Case 6. The scheduling system is responsible for the creation,
resource allocation, and management of VMs. After a software
change, some resource data within the scheduling system
became erroneous. For example, suppose a physical machine
has 104 CPU cores, but due to data errors in the scheduling
system, the created VMs actually requires 108 cores in total.
Thus, the last VM created would experience a allocation
failure, unable to obtain the required computing resources.
Without exclusive cores, its performance suffered a loss.

Fig. 9(a) illustrates the CDI for the vm allocation failed
event over a period of one month. Upon detecting the spike
on Day 14 through the algorithm, an immediate investigation
is undertaken. We corrected the resource data and migrated
the excessive VMs. As a result, the CDI for Day 15 reverted
to expected levels.
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Fig. 10: Workflow of hypothesis test

Spikes in the CDI correspond to a decline in stability and ne-
cessitate heightened scrutiny. On the other hand, although dips
are theoretically representative of an improvement in stability,
a detailed analysis in practice is also required. These dips
could result from the successful implementation of stability
strategies or may signal the presence of a potential problem.
An example is provided below:

Case 7. Thermal Design Power (TDP) is a term used to
describe the maximum amount of heat generated by a CPU
under normal operational conditions. To prevent overheating,
if the CPU’s actual energy consumption reaches this value,
the CPU may reduce its frequency (operating speed), which
can affect the performance of VMs running on it. Therefore, we
collect CPU energy consumption data and compare it with the
TDP to generate inspect cpu power tdp events, which helps
in monitoring performance.

As shown in Fig. 9(a), the CDI began to decline on Day
13. Initially, we thought this was a success of the optimized
scheduling strategy. However, by Day 17, the CDI had dropped
to a very low level, far below our expectations. We discovered
that the decline was due to an error in power collection
module on physical machines, which resulted in the collected
power being zero. We immediately fixed this issue.

Starting from Day 18, the CDI gradually returned to normal
levels. This incident highlighted the importance of data quality
monitoring and the limitations of focusing only on CDI in-
creases. Consequently, we have since allocated equal scrutiny
to both spikes and dips in the CDI.

D. Operation Action Optimization

For each operation rule, it is necessary to associate an
appropriate operation action. Besides, in situations where there
are multiple candidate actions, especially when candidates are
similar, it is challenging for even experts to determine the
optimal action. In such cases, the CDI integrated with A/B
test, can serve a pivotal role in directing the optimization of
operation actions.
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Fig. 11: Performance Indicator of each operation action

TABLE V: Hypothesis Test Results

Sub-metric Omnibus Test Post-hoc Analysis
P-value Sign. Pair P-value Sign.

Unavailability 0.47 False

Control-plane 0.89 False

Performance 0 True
A-B 0 True
A-C 0.03 True
B-C 0 True

Specifically, we initiate A/B test for operation rules requir-
ing optimization. When a VM is hit by a rule, it will randomly
carry out one of the potential actions, following a predefined
probability distribution. For each VM, we calculate its CDI
for the subsequent two days after the operation. Thus, for
every action, we have a sequence of CDI values, with each
element within the sequence corresponding to a VM which
has implemented that specific action.

We employ hypothesis testing to analyze whether there are
differences between actions. Firstly, omnibus test [41] is used
to verify whether the differences between groups are statis-
tically significant. If a significant difference is identified and
the number of sample groups exceeds two, paired comparisons,
known as post-hoc analysis [42], are applied to identify which
specific groups exhibit significant differences.

The choice of tests for the omnibus test and post-hoc
analysis varies according to the distribution, variance homo-
geneity, and the number of samples. We use one-way ANOVA
[43], Welch’s ANOVA [46] or Kruskal-Wallis H test [48] as
the omnibus test. Meanwhile, Tukey HSD test [44], Tukey-
Kramer test [45], Games-Howell test [47] or Dunn’s multiple
comparison test [49] are utilized for the post-hoc analysis.
Fig. 10 presents the complete procedure for hypothesis testing.

It should be noted that the CDI contains three sub-metrics.
Consequently, we need to carry out hypothesis testing three
times, one for each sub-metric. Alternatively, it is possible
to aggregate the three sub-metrics into a single one using
techniques like weighted summation before proceeding with
the test. Moreover, this methodology can also serve to evaluate
the effectiveness of the operation rules if a null action is
included as a comparison in the A/B test.

Case 8. Based on a series of performance events, the op-

eration rule nc down prediction is designed to forecast NC
failures. Upon the prediction of a potential failure, an opera-
tion action is executed to prevent the NC failure from leading
to VM unavailability.

However, the selection of operation actions meets chal-
lenges. There are three candidates; although each action
involves a live migration of all VMs on the NC, differences
exist in migration parameters and sequences. In order to
determine the most effective operation action, an A/B test is
conducted utilizing the CDI.

This test spans three months. Based on the CDI sequences
of three actions, the hypothesis test results are presented
in Table V. At a significance level of 0.05, significant dif-
ferences are only observed in the Performance Indicator.
Moreover, post-hoc analysis indicates significant differences
between each pair of actions. Fig. 11 displays the distribution
of Performance Indicators for the three operation actions,
with their mean values at 0.40, 0.08, and 0.42, respectively.
Evidently, Action B stands out as the superior choice. Con-
sequently, it is selected as the designated action for the rule
nc down prediction.

VII. RELATED WORK

A. Gray Failure

For cloud services, it is common for a service to remain
available while experiencing performance degradation. This
phenomenon is known as gray failure [50] or fail-slow [51].
The research community has recognized the significance of
such issues and has initiated efforts to mitigate them. In
the realm of distributed storage systems, the IASO method
[52] detects slowdown nodes via inter-node timeout signals.
Concurrently, Perseus [20] employs non-intrusive metrics like
IO latency and throughput for problem identification. Further-
more, in the context of large-scale cloud computing clusters,
SORN [53] leverages the distribution of task execution times,
integrating deep learning with classical transportation opti-
mization techniques, to pinpoint cluster-level slowdowns.

Inspired by these works, we introduce the Performance
Indicator and Control-Plane Indicator within CDI, which quan-
titatively evaluates the gray failures of cloud servers. These
indicators offer valuable guidance for the operational and
maintenance activities associated with gray failures.



B. Stability Evaluation
1) Algorithm Stability: For an algorithm, especially a ma-

chine learning algorithm, achieving stable output in response
to input perturbations is a key objective. To achieve this,
an array of techniques such as data cleaning and repairing
[54] [55] [56], ensemble learning [57], and cross-validation
[58] are utilized to enhance stability. When it comes to
evaluating stability, certain studies offer theoretical assurances
[59]. Meanwhile, repeated trials and datasets from a multitude
of domains [60] are leveraged in experiments. Additionally, for
randomized algorithms, the influence of random seeds [61]
must also be taken into account in the stability evaluation.

2) System Stability: It is the ability to consistently deliver
services as expected. Given the complexity of entire systems,
stability evaluation often requires sophisticated, high-level
approaches, which can be categorized into two types: The first
is the non-invasive methods based on monitoring data, such
as mean time between failures (MTBF), mean time to repair
(MTTR), and availability [62]. The second is invasive methods
that involve providing the system with carefully crafted inputs
and comparing the outputs with expected results. Benchmark
methods [25] are a prime example.

3) Cloud Server Stability: As a complex production system,
cloud server stability evaluation can also be categorized into
two types. For non-intrusive methods, in addition to traditional
metrics like MTBF and MTTR, Levy et al. [4] introduced the
Annual Interruption Rate, which focuses on the frequency of
unavailability incidents. Zhou et al. [63] proposed a method
based on classified statistics and hierarchical variable weights,
incorporating non-technical aspects like service request time-
liness, but still focusing on technical unavailability scenarios.

In the realm of intrusive methods, Xiong et al. [25] de-
veloped SuperBench, a benchmark suite for evaluating AI
infrastructure which includes both end-to-end AI workload
benchmarks and hardware component micro-benchmarks. The
SuperBench, however, incurs a relatively high cost and is
therefore only applied to machines with potential issues as
identified by the selector, rather than being used for compre-
hensive testing.

In contrast, our proposed CDI is more cost-effective and
suitable for large-scale cloud server stability evaluation. CDI
is designed for general scenarios, addressing not only unavail-
ability issues but also performance and control-plane concerns,
providing a more comprehensive assessment.

VIII. DISCUSSION AND EXPLORATION

A. Generality
The original intent of CDI is to offer a universal evaluation

framework to assist cloud providers in quantifying the stability
of their cloud servers. The core concept of CDI is an event-
driven stability evaluation mechanism, a design that grants it
good generality. For business scenarios, though our existing
events are designed for generic use cases, they can be cus-
tomized for particular scenarios via configuration adjustment.
For example, due to the sensitivity to network fluctuations,
Redis instances might necessitate a higher warning level.

Additionally, the sub-metric categorization provides insights
into cloud servers and can be deployed across different plat-
forms. In implementations, for instance, the Azure Narya
platform [4] catalogs over 2000 features, akin to our events,
which enables the stability evaluation in a similar way.

Furthermore, this event-based evaluation philosophy can
be extended to other cloud products. For instance, storage
services (such as OSS [5]) may prioritize elements such as data
availability, read/write latency, and configuration management.
In contrast, computing services (like MaxCompute [6]) may
emphasize concerns related to computing latency, resource
allocation, fault tolerance, and control aspects. The key lies in
the precise definition and classification of events. Since these
definitions and categorizations involves the implementation
details of cloud products, the deep involvement of product
experts is required.

B. Customer-Perspective Event
As discussed in Section III-A, apart from the unavailability

of cloud servers, Alibaba Cloud customers are also sensitive
to performance degradation and control-plane problems. ECS
instance health diagnosis [2] discloses a subset of system
events to customers, assisting them in problem diagnosis.
For example, if a customer receives an alert about slow I/O
performance from the underlying VM, they can correlate this
with their own API timeout errors and take appropriate actions.

Besides, since the existing CDI is designed for internal
stability engineers at Alibaba Cloud, it still poses a technical
barrier that prevents its direct application to customers. With
the event subset from instance health diagnosis, we can also
compute a Customer-Perspective Indicator using the same
framework as the CDI. We leave this as our future work.

C. Operation Platform Optimization
Although the CDI primarily evaluates stability retrospec-

tively, its components like event weights can be utilized to
improve operational efficiency within a real-time operation
platform. By applying this approach, the system can prioritize
actions based on event severity. For instance, when deciding
between migrating two VMs, the system would give prece-
dence to the VM with higher event weights, as its migration
would more positively influence overall CDI. Furthermore, for
issues of different severities, the platform can automatically
choose the most appropriate action. That is, low-severity issues
might result in a ticket being filed, while high-severity issues
could trigger immediate actions such as VM migration. This
aspect is designated for future research and development.

IX. CONCLUSION

This study explores the stability evaluation of large-scale
cloud servers. Existing technology is limited to downtime,
which is just a subset of stability. Thus, we introduce the
CDI. Based on the interpretable CloudBot events, it extends
stability evaluation beyond system unavailability to include
performance and control-plane issues, yielding a more com-
prehensive evaluation and providing significant support for the
evolution of stability.
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