
BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition
with Backtrack Technique

Haoyu Wang

Alibaba Group

Hangzhou, China

lingzun.why@alibaba-inc.com

Hongke Guo

Alibaba Group

Beijing, China

guohongke.ghk@alibaba-inc.com

Zhaoliang Zhu

Alibaba Group

Hangzhou, China

rongdi.zzl@alibaba-inc.com

You Zhang

Alibaba Group

Hangzhou, China

zhangyou.zy@alibaba-inc.com

Yu Zhou

Alibaba Group

Beijing, China

tuhu@alibaba-inc.com

Xudong Zheng

Alibaba Group

Hangzhou, China

xudong.zxd@alibaba-inc.com

Abstract
Seasonal-trend decomposition (STD) is a crucial task in time se-

ries data analysis. Due to the challenges of scalability, there is a

pressing need for an ultra-fast online algorithm. However, exist-

ing algorithms either fail to handle long-period time series (such

as OnlineSTL), or need time-consuming iterative processes (such

as OneShotSTL). Therefore, we propose BacktrackSTL, the first

non-iterative online STD algorithm with period-independent 𝑂 (1)
update complexity. It is also robust to outlier, seasonality shift and

trend jump because of the combination of outlier-resilient smooth-

ing, non-local seasonal filtering and backtrack technique. Experi-

mentally, BacktrackSTL decomposes a value within 1.6𝜇𝑠 , which

is 15× faster than the state-of-the-art online algorithm OneShot-

STL, while maintaining comparable accuracy to the best offline

algorithm RobustSTL. We have also deployed BacktrackSTL on the

top of Apache Flink to decompose monitoring metrics in Alibaba

Cloud for over a year. Besides, we have open-sourced the artifact

of this proposal on GitHub.

CCS Concepts
• Information systems→ Data stream mining; • Computer
systems organization→ Real-time systems.

Keywords
Online seasonal-trend decomposition; backtrack; streaming com-

puting

ACM Reference Format:
HaoyuWang, HongkeGuo, Zhaoliang Zhu, You Zhang, Yu Zhou, andXudong

Zheng. 2024. BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decompo-

sition with Backtrack Technique. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’24), August
25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3637528.3671510

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3671510

Table 1: Comparison of different STD algorithms (𝑇 is the
period length and 𝐼 is the maximum iterations)

Algorithm

Trend Seasonality Outlier Online

Jump Shift Tolerance Complexity

STL No No No -

TBATS Yes No No -

STR No Yes Yes -

SSA No No No -

RobustSTL Yes Yes Yes -

OnlineSTL No No No 𝑂 (𝑇)
OneShotSTL Yes Yes No 𝑂 (𝐼)

BacktrackSTL Yes Yes Yes 𝑶 (1)

1 Introduction
Many time series exhibit repeating segments, in other words, pe-

riodicity. This periodicity can stem from human activities, such

as website visits, or from timed behavior, such as machine loads

with scheduled tasks. Many methods including frequency domain

analysis [24, 33], wavelet analysis [29, 31], and correlation analysis

[25, 30] are commonly used in the analysis of periodic time series.

Besides, seasonal-trend decomposition (STD) is also widely used.

STD decomposes a periodic time series into three components:

trend, seasonality, and residual. The decomposition plays a crucial

role in downstream time series analysis tasks, such as data repair

[32, 34, 39], anomaly detection [15, 21, 38], and forecasting [20, 35].

For leading cloud service providers such as Alibaba Cloud, the

challenge of scalability necessitates a focused investment in AIOps

technologies including STD. A case in point is Alibaba Cloud’s

Elastic Compute Service (ECS) [2], which oversees tens of millions

of virtual machine instances, generating a vast amount of periodic

time series. In such an industrial context, time efficiency has the
highest priority in the design of STD algorithm, even taking

precedence over accuracy.

There are numerous existing works on STD, some of which are

compared in Table 1. STD algorithms can be broadly categorized

into two groups. The first group consists of offline algorithms, such

as STL [16], TBATS [26], STR [17], SSA [22] and RobustSTL [35],

which process a batch of values in one go and output their decom-

positions. These algorithms, however, do not support incremental

updates, making their time complexity unacceptable in the scalable

https://orcid.org/0000-0002-4871-5334
https://doi.org/10.1145/3637528.3671510
https://doi.org/10.1145/3637528.3671510
https://doi.org/10.1145/3637528.3671510

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

Table 2: Notations

Symbol Description

𝑦𝑡 Raw value at time 𝑡

𝜏𝑡 Trend component at time 𝑡

𝑠𝑡 Seasonality component at time 𝑡

𝑟𝑡 Residual component at time 𝑡

𝑇 Period length of time series

𝑁 Number of points in offline STD algorithm

𝐾 Number of considered past neighborhoods

𝑊 Constant window size in online STD algorithm,𝑊 =

(𝐾 + 1)𝑇 in BacktrackSTL

𝐻 One-side width of a neighborhood

𝛿 Standard deviation of seasonal component variations

𝐿 Consecutive outlier threshold for trend jump

𝑛 Parameter for N-Sigma detection

𝑦𝑡 Reference value of 𝑦𝑡
Y Circular queue for moving average

R Circular queue for N-Sigma

𝜆1, 𝜆2 Regularization parameters of RobustSTL

𝐼 Maximum number of iterations

scenario. Despite this limitation, these algorithms can achieve high

decomposition accuracy. For instance, RobustSTL utilizes 𝑙1-norm

optimization and non-local seasonal filtering to enhance robustness

to trend jumps, seasonal shifts, and outliers.

The second group consists of online algorithms, such as On-

lineSTL [27] and OneShotSTL [23], which decompose values incre-

mentally. OnlineSTL employs a simple tri-cube filter and exponen-

tial smoothing to extract trend and seasonality; however, its time

complexity is 𝑂 (𝑇), unsuitable for long-period series. On the other

hand, OneShotSTL proposes an incremental variant of 𝑙1-norm op-

timization and realizes a period-independent complexity, yet still

requires iterative approximation of the optimal solution.

As discussed above, the time efficiency of existing algorithms

still need improvements. In Section 3, a detailed analysis of the

current approaches is conducted. To fulfill multiple requirements si-

multaneously, a high-complexity 𝑙1-norm optimization is employed.

To reduce the complexity further, our insight is that combining
various low-complexity methods may be more effective in
addressing complex requirements than using a single high-
complexity method.

Based on the insight, we present BacktrackSTL, a novel online

STD algorithm with 𝑂 (1) time complexity. Specifically, Backtrack-

STL incorporates an outlier-resilient smoothing. It combines the

strengths of anomaly detection and smoothing, which proficiently

manages outliers across a spectrum of severity while extracting the

trend. Moreover, non-local seasonal filtering is integrated to capture

seasonality and accommodate shifts. Additionally, jump detection

reveals the underlying principles obscured by complex optimization

objectives, resolving trend jumps via a novel backtrack technique.

As a result, BacktrackSTL can decompose a new value from the

stream in constant time based on the decomposition results in the

sliding window. This efficient computational performance positions

BacktrackSTL as a robust solution for real-time periodic time-series

analysis in large-scale streaming environments.

Our contributions are summarized as follows:

• To the best of our knowledge, BacktrackSTL is the first

non-iterative online seasonal-trend decomposition algorithm

with period-independent 𝑂 (1) time complexity. It is 400×
and 15× faster than OnlineSTL and OneShotSTL, respec-

tively, when the period is 12800.

• BacktrackSTL combines outlier-resilient smoothing, non-

local seasonal filtering and backtrack technique to achieve

the robustness to outlier, seasonality shift and trend jump,

respectively. The accuracy of BacktrackSTL is comparable

to existing online and offline STD algorithms.

• We have successfully deployed the BacktrackSTL algorithm

based on Apache Flink in the production environment of

Alibaba Cloud, where it has been used to perform real-time

decomposition of monitoring metrics for over a year.

The artifact of BacktrackSTL is open-sourced on GitHub [8]. The

frequently used notations are listed in Table 2.

2 Preliminary
2.1 Decomposition Model
As a traditional problem, seasonal-trend decomposition is defined

as follows:

𝑦𝑡 = 𝜏𝑡 + 𝑠𝑡 + 𝑟𝑡 , 1 ≤ 𝑡 ≤ 𝑁 (1)

where 𝑦𝑡 corresponds to the original value at time 𝑡 , 𝜏𝑡 , 𝑠𝑡 and 𝑟𝑡 is

the trend, seasonal component and the residual, respectively.

Usually, the trend 𝜏𝑡 changes not very fast. However, 𝜏𝑡 may

still have abrupt changes at a low frequency, which is called trend
jump. It occurs at a very low frequency, typically manifesting once

over multiple periods. The seasonality component 𝑠𝑡 is a repeated

pattern with period 𝑇 . To ensure the uniqueness of decomposition,

the sum of all seasonality components in a period is fixed to 0.

Formally,

∑𝑡+𝑇−1
𝑖=𝑡 𝑠𝑖 = 0 is satisfied for any 𝑖 . Due to seasonality

shift, the period varies slightly in the time domain. Besides, the

residual 𝑟𝑡 can be decomposed further into two parts:

𝑟𝑡 = 𝑎𝑡 + 𝑛𝑡 , 1 ≤ 𝑡 ≤ 𝑁 (2)

where 𝑎𝑡 is the outlier part and𝑛𝑡 is the white noise. The occurrence
of outliers is random.

In short, our assumption is that: the original value 𝑦𝑡 can be

decomposed into three components, 𝜏𝑡 with trend jumps, 𝑠𝑡 with

seasonality shifts and 𝑟𝑡 with outliers.

2.2 Online Decomposition
In the online scenario, the original values arrive continuously as a

stream, while the decomposition proceeds incrementally. For each

value𝑦𝑡 , we decompose it into trend 𝜏𝑡 , seasonal component 𝑠𝑡 , and

residual 𝑟𝑡 , just as the model in formula (1). Due to limited mem-

ory, the decomposition relies on the recent history, i.e., 𝜏𝑡−𝑊 ..𝑡−1,
𝑠𝑡−𝑊 ..𝑡−1 and 𝑟𝑡−𝑊 ..𝑡−1 in a window with constant size𝑊 .

3 Motivation
To the best of our knowledge, RobustSTL is currently the most

accurate STD algorithm. In this section, we take RobustSTL as an

example to explore potential directions for further enhancing time

efficiency.

BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique KDD ’24, August 25–29, 2024, Barcelona, Spain.

Trend Extraction (96.716%)

Final Adjustment (0.002%)
Seasonality Extraction (2.181%)
Noise Removal (1.101%)

Figure 1: Time cost breakdown of RobustSTL

3.1 Analysis on Time Complexity
RobustSTL consists of four stages: noise removal, trend extraction,

seasonality extraction, and final adjustment. We evaluate the time

cost of each stage and present the results in Figure 1. It is evident

that the trend extraction stage consumes the majority of the time,

accounting for over 96%. In fact, this stage solves an optimization

problem based on the 𝑙1-norm. Since 𝑙1-norm optimization does

not have a closed-form solution, RobustSTL utilizes a computation-

intensive numerical method to obtain the solution.

To improve time efficiency further, we identify two promising av-

enues for exploration. The first one entails the utilization of approx-

imation to lower the computational burden of 𝑙1-norm optimization.

An illustration of this approach is OneShotSTL, which introduces

an incremental variant. Despite this innovation, it still requires

iterations for approximated results, consequently its level of com-

plexity optimization remains somewhat inadequate. Conversely,

the second one involves investigating a synthesis of low-complexity

methods aimed at delivering comparable effectiveness. Owing to

its expansive potential on efficiency, we opt for the second avenue

for our research endeavors.

3.2 Analysis on Effectiveness
Now, let’s look at how well 𝑙1-norm optimization works. In Robust-

STL [35], the objective function of the optimization is a minimum

weighted sum function, which is defined as follows:

min

𝜏1...𝑁

𝑁∑︁
𝑡=𝑇+1

| (𝑦𝑡 − 𝜏𝑡) − (𝑦𝑡−𝑇 − 𝜏𝑡−𝑇) | + 𝜆1
𝑁∑︁
𝑡=2

|𝜏𝑡 − 𝜏𝑡−1 |

+ 𝜆2
𝑁∑︁
𝑡=3

|𝜏𝑡 − 2𝜏𝑡−1 + 𝜏𝑡−2 | (3)

The first term helps to make the differences between periods smaller

after we remove the trends. The subsequent two terms represent the

first and second-order differences of the trend, aiming to smooth the

trend. As illustrated in the paper of RobustSTL, this optimization

exhibits robustness to outliers and trend jumps.

Firstly, consider a simple case about outliers in Figure 2(a). Ig-

noring all seasonal components for simplicity, there is an outlier at

time 𝑖 , e.g., 𝑦𝑡 = 1 for only 𝑡 = 𝑖 and 𝑦𝑡 = 0 otherwise. Obviously,

the objective function formula (3) reaches the minimum when all

other 𝜏𝑡 = 0 if 𝑡 ≠ 𝑖 . Therefore, when incorporating all the afore-

mentioned values, 𝜏𝑖 is the only variable for the following minimum

... i-4 i-2 i i+2 i+4 ...
Time

0.0

0.5

1.0

Va
lu
e

Raw
Trend

(a) Outlier

... i-4 i-2 i i+2 ... i+k
Time

0.0

0.5

1.0

Va
lu

e

Raw
Trend

(b) Trend jump

Figure 2: Effectiveness of trend extraction with 𝑙1-norm

objective function:

min

𝜏𝑖
2|1 − 𝜏𝑖 | + 2𝜆1 |𝜏𝑖 | + 4𝜆2 |𝜏𝑖 | (4)

The solution is as follows:

𝜏𝑖 =

{
0, 𝜆1 + 2𝜆2 > 1

1, 𝜆1 + 2𝜆2 ≤ 1

(5)

Besides, the optimization is also suitable for trend jump. Consider

the trend jump (shown by the overlapped blue line) in Figure 2(b),

suppose all values after time 𝑖 are 1 and the last value is at 𝑖 + 𝑘 .
Similarly, calculating the objective function when 𝜏 is jump or not,

we find that the extracted trend is the same to the raw value when

𝜆1 + 2𝜆2 < 𝑘 + 1 (6)

Otherwise, the jump is not detected and the extracted trend stays 0.

In summary, 𝑙1-norm-based optimization can handle both out-

liers and trend jumps, as shown by the orange line in Figure 2.

This prompts us to employ two low-complexity methods each tai-

lored to a specific challenge and then integrate them. Motivated

by this insight, we apply outlier-resilience smoothing and back-

track technique that is robust against jumps, achieving comparable

performance while significantly reducing computational effort.

4 BacktrackSTL Decomposition
4.1 Overview
Based on the analysis in Section 3.2, we propose a new online decom-

position algorithm, BacktrackSTL. Figure 3 provides an overview.

Similar to other online algorithms, such as OnlineSTL and OneShot-

STL, it consists of two stages: initialization and online update.

For initialization, we can use any offline STD algorithm to de-

compose the values in the window, including STL and RobustSTL.

This stage is conducted only once for a time series. Appendix A

introduces the initialization algorithm utilized in BacktrackSTL.

In the online update stage, we maintain a sliding window whose

length is an integer multiple of period 𝑇 . This stage involves four

steps. In Section 4.2, we use outlier-resilient smoothing to extract

the trend with robustness to outliers. In Section 4.3, we employ

the non-local seasonal filtering to extract the seasonality compo-

nent and handle seasonality shifts simultaneously. After that, in

Section 4.4, we detect trend jumps based on the idea of concept

shift. If a jump is detected, we utilize the backtrack technique in

Section 4.5 to correct the past decompositions.

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

Jump Detected

Stage 2: Online Update

Stage 1: Initialization

(a) Outlier-Resilient Smoothing

Outlier

(b) Non-local Seasonal Filtering

Seasonality Shift

(c) Jump Detection(d) Backtrack

Trend Jump

Figure 3: Overview of BacktrackSTL

4.2 Outlier-Resilient Smoothing
First, let us consider a simple case without outliers. To extract

the trend in online update, we employ a moving average [28], as

described below:

𝜏𝑡 =
1

𝑊

𝑡∑︁
𝑖=𝑡−𝑊 +1

𝑦𝑖 =
1

𝑊

𝑡∑︁
𝑖=𝑡−𝑊 +1

(𝜏𝑖 + 𝑠𝑖 + 𝑟𝑖) (7)

Since𝑊 is an integer multiple of 𝑇 and the residual is nearly a

white noise, the terms of seasonality and residual can both be re-

moved from formula (7). Furthermore, due to the very slow change

of the trend components, formula (7) is a proper approximation.

To address outliers, we employ a dynamic N-Sigma mechanism

with parameter 𝑛 on 𝑠𝑡−𝑊 ...𝑡−1 to detect outliers. For each 𝑦𝑡 , we

calculate its reference value 𝑦𝑡 . If the difference between 𝑦𝑡 and 𝑦𝑡
is above the N-Sigma threshold, it will be classified as an outlier and

𝑦𝑡 will be used in moving average instead. Additionally, if the differ-

ence is below the threshold, moving average can effectively smooth

them. Therefore, this method is called outlier-resilient smoothing.
When calculating the reference value 𝑦𝑡 , we estimate the trend

component with 𝜏𝑡−1. For seasonality, 𝐾 past neighborhoods of

decomposed seasonality, centered at 𝑠𝑡−𝐾𝑇 , · · · , 𝑠𝑡−𝑇 with width

𝐻 , are considered. Specially, each neighborhood contains 2𝐻 +
1 components, e.g., 𝑠𝑡−𝑇−𝐻 , · · · , 𝑠𝑡−𝑇 , · · · , 𝑠𝑡−𝑇+𝐻 belong to the

neighborhood centered at 𝑠𝑡−𝑇 . The one closest to 𝑦𝑡 − 𝜏𝑡−1 is

selected. Formally, the equation is as follows:

𝑦𝑡 = 𝜏𝑡−1 + arg min

𝑠𝑖 ,𝑖∈Ω
|𝑠𝑖 − (𝑦𝑡 − 𝜏𝑡−1) | (8)

Ω = {𝑖 | (𝑡 ′ = 𝑡 − 𝑘𝑇, 𝑖 = 𝑡 ′ ± ℎ)} (9)

𝑘 = 1, 2, . . . , 𝐾 ;ℎ = 0, 1, . . . , 𝐻

In the implementation, wemaintain two circular queuesY andR,
both of length𝑊 , which includes all𝑦𝑖 (or𝑦𝑖 if outlier detected) and

Algorithm 1: Outlier Resilient Smoothing

Data: 𝑦𝑡−𝑊 ...𝑡 , 𝜏𝑡−𝑊 ...𝑡−1, 𝑠𝑡−𝑊 ...𝑡−1, 𝑟𝑡−𝑊 ...𝑡−1,Y,R
1 Obtain 𝑦𝑡 according to formula (8)-(9) ;

2 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ← 𝑁𝑆𝑖𝑔𝑚𝑎(𝑦𝑡 − 𝑦𝑡);
3 if detected then
4 Add 𝑦𝑡 to Y;
5 else
6 Add 𝑦𝑡 to Y;
7 𝜏𝑡 ←𝑚𝑒𝑎𝑛(Y);
8 return 𝜏𝑡 , 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑠𝑖 in the sliding window, respectively. For Y, we maintain the size

|Y| and the sum

∑
𝑦𝑖 ∈Y 𝑦𝑖 as the inner state variable, and update

them whenever the elements in Y are changed. As a result, the

operation complexities of addition, removal andmoving average are

all𝑂 (1). Similarly, N-Sigma detection with R can also be completed

in 𝑂 (1). Algorithm 1 shows the main procedure.

Figure 3(a) illustrates the trend extracted by outlier-resilient

smoothing. For clarity, we present the results for all data points,

though the decomposition is performed one by one. Neither outliers

(encircled in red) nor noise significantly impact the accuracy of the

trend extraction. However, smoothing alone is unable to extract

trend accurately after jump, thus the supports of jump detection in

Section 4.4 and backtrack in Section 4.5 are needed.

4.3 Non-local Seasonal Filtering
To extract the seasonality component, we directly utilize the non-

local seasonal filtering proposed by RobustSTL [35], which is robust

to seasonality shifts. It is weighted average of neighborhoods Ω
shown in formula (9), which is defined as follows:

𝑠𝑡 =
∑︁
𝑗∈Ω

𝑤𝑡𝑗𝑦
′
𝑗 (10)

𝑤𝑡𝑗 =
1

𝑧
exp{− (𝑗 − 𝑡

′)2
2𝐻2

−
(𝑦′
𝑗
− 𝑦′𝑡)2

2𝛿2
} (11)

𝑦′𝑗 =𝑦 𝑗 − 𝜏 𝑗 (12)

where 𝑧 is the normalization factor, 𝑡 ′ is the center of the neighbor-
hood 𝑗 belongs to and 𝛿 is a parameter which controls how different

the seasonal components are in various periods. Since the weights

𝑤𝑡
𝑗
are given by two Gaussian functions. The component close to

neighborhood center 𝑡 ′ and de-trend value 𝑦′𝑡 is large.
Figure 3(b) illustrates the seasonality extracted by non-local

seasonal filtering. Similarly, the accurate seasonality turns to inac-

curate after the jump.

4.4 Jump Detection
Before discussing the specific method for jump detection, let us first

consider a simple example illustrated in Figure 4 to demonstrate

the challenge of jump detection. Suppose that the seasonality com-

ponents have been removed, and at time 𝑖 , we observe that 𝑦𝑖 = 1,

which deviates clearly from the normal trend. However, we still

cannot decide whether it is an outlier (following the blue line in

the future) or a trend jump (following the orange line). Since we

BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique KDD ’24, August 25–29, 2024, Barcelona, Spain.

... i-5 i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 ...
Time

0.0

0.5

1.0

Va
lu

e

Outlier
Trend jump
History

Figure 4: Challenge of jump detection

are unable to predict the future, a delayed decision is naturally
embedded in the online scenario.

As shown in Figure 3(c), a trend jump leads to consecutive high

residuals (encircled in red), which is greatly different from the

outlier (encircled in blue). We employ the concept drift detection

idea to detect it. If an extremely rare event occurs under the given

model or assumption, it suggests the presence of a concept drift

problem. Specifically, we introduce a parameter 𝐿, and assume

that there is no trend jump with outlier probability 𝑝 . We classify

all deviated values as outliers. When the number of consecutive

outliers exceeds 𝐿, i.e., the probability 𝑝𝑘 is less than the threshold

𝑝𝐿 , we consider that an extreme event has taken place, resulting in

a violated assumption and a detected trend jump.

In fact, referring to formula (6), the optimization objective of

RobustSTL also implies a similar judgment. Only after detecting

⌈𝜆1 + 2𝜆2⌉ consecutive deviations can it be determined as a jump

and provide the correct decomposition. Compared with the regu-

larization parameter in RobustSTL, consecutive outlier threshold 𝐿

is more intuitive and easier to set.

4.5 Backtrack
When a trend jump is detected at time 𝑡 , all values after the jump,

i.e., 𝑦𝑡−𝐿+1...𝑡 , have been decomposed in the wrong way due to the

detection delay. Since each decomposition relies on the previous

ones, a backtrack is necessary to correct them.

Specifically, we still use the average method to estimate the trend.

Considering that the seasonality components are similar between

different periods, i.e., 𝑠𝑡 ≈ 𝑠𝑡−𝑇 , we estimate all trends 𝜏𝑡−𝐿+1...𝑡 as
a constant 𝜏 :

𝜏 =
1

𝐿

𝑡∑︁
𝑖=𝑡−𝐿+1

𝑦𝑖 − 𝑠𝑖−𝑇 (13)

Then, we use non-local seasonal filtering in formula (10)-(12) to

extract the seasonality components 𝑠𝑡−𝐿+1...𝑡 .
Besides, there is a noticeable difference in values before and after

the jump, which can result in an incorrect result for the moving

average. To address it, we make a compensation by adding the gap

𝜏 − 𝜏𝑡−𝐿 to all the elements before jump in Y. The main procedure

of backtrack is shown in Algorithm 2. Figure 3(d) shows the correct

decompositions when backtrack is applied.

Discussion on Periodic Context Disruption. In practice, the seasonal

component of a series may change significantly, called periodic

context disruption. For example, when an API is transformed from

private test to public release, the series of its request count may

meet such a disruption. This situation violates the outlier-only

assumption in Section 4.4, which may be misjudged as a jump,

Algorithm 2: Backtrack
Data: 𝑦𝑡−𝑊 ...𝑡 , 𝜏𝑡−𝑊 ...𝑡 , 𝑠𝑡−𝑊 ...𝑡 , 𝑟𝑡−𝑊 ...𝑡 ,Y,R

1 𝜏𝑡−𝐿+1...𝑡 ←𝑚𝑒𝑎𝑛(𝑦𝑡−𝐿+1...𝑡 − 𝑠𝑡−𝑇−𝐿+1...𝑡−𝑇);
2 Estimate 𝑠𝑡−𝐿+1...𝑡 according to formula (10)-(12) ;

3 𝑟𝑡−𝐿+1...𝑡 ← 𝑦𝑡−𝐿+1...𝑡 − 𝜏𝑡−𝐿+1...𝑡 − 𝑠𝑡−𝐿+1...𝑡 ;
4 Update 𝑦𝑡−𝐿+1...𝑡 and compensate other elements in Y;
5 Update 𝑟𝑡−𝐿+1...𝑡 in R ;

Algorithm 3: BacktrackSTL, Online Update
Data: 𝑦𝑡−𝑊 ...𝑡 , 𝜏𝑡−𝑊 ...𝑡−1, 𝑠𝑡−𝑊 ...𝑡−1, 𝑟𝑡−𝑊 ...𝑡−1,Y,R

1 Obtain 𝜏𝑡 and 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 with outlier-resilient smoothing;

2 Estimate 𝑠𝑡 according to formula (10)-(12) ;

3 𝑟𝑡 ← 𝑦𝑡 − 𝜏𝑡 − 𝑠𝑡 ;
4 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑛𝑡 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ? 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑛𝑡 + 1 : 0;
5 if 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑛𝑡 ≥ 𝐿 then
6 Backtrack the decompositions of last 𝐿 values;

7 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑛𝑡 ← 0;

8 return 𝜏𝑡 , 𝑠𝑡 , 𝑟𝑡

triggering a backtrack. Therefore, if the majorities of residuals after

backtrack still violate the N-Sigma constraint, a periodic context

disruption is suggested. It is necessary to discard all values and

regard the series as a new one. Because periodic context disruption

is out of the scope of the model in Section 2, we leave it as part of

our future work.

4.6 Summary
In this section, we introduce an online decomposition algorithm

called BacktrackSTL. The sliding window length𝑊 = (𝐾 + 1)𝑇 ,
since it is the minimum length containing all considered past neigh-

borhoods. Algorithm 3 shows the online update procedure of Back-

trackSTL.

Proposition 4.1 (Update complexity). In online update stage,
BacktrackSTL updates the decomposition of a single value within
amortized 𝑂 (1) time complexity.

Proof. There are four steps of BacktrackSTL update.

Outlier-resilient smoothing: First, we calculate the reference value
by traversing all values in 𝐾 neighborhoods with 𝑂 (𝐾𝐻) complex-

ity. Second, N-Sigma detection costs 𝑂 (1) time since useful inner

state variables are precomputed. Third, the complexity of updating

Y and getting average is 𝑂 (1) due to precomputed states as well.

Thus, the total complexity of outlier-resilient smoothing is 𝑂 (𝐾𝐻).
Non-local seasonal filtering: This step is a weighted linear combi-

nation of 𝐾 neighborhoods. Thus, the computational complexity is

𝑂 (𝐾𝐻).
Jump detection: This step is a comparison with complexity 𝑂 (1).
Backtrack: First, calculating 𝜏 needs 𝑂 (𝐿) time. Second, since

the computational complexity of a non-local seasonal filtering is

𝑂 (𝐾𝐻), extracting the seasonality of 𝐿 values costs 𝑂 (𝐾𝐻𝐿) time.

Then, all elements in Y need update or compensation, which costs

𝑂 (𝑊) time. Thus, the total complexity of backtrack is𝑂 (𝑊 +𝐾𝐻𝐿).

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

Finally, since 𝐾 and 𝐻 are both fixed constant parameters, the

complexities of outlier-resilient smoothing and non-local seasonal

filtering can be considered as 𝑂 (1). Similarly, also due to the con-

stant 𝐿 threshold, the complexity of backtrack is𝑂 (𝑊). Considering
the rarity of jumps, e.g., lower than

1

𝑊
, its amortized complexity is

still 𝑂 (1). Therefore, the total complexity of BacktrackSTL is 𝑂 (1),
independent of the period length 𝑇 . □

5 Deployment
Stability is crucial for cloud companies. In Alibaba Cloud, ECS

anomaly scheduling platform is built to monitor metrics and exe-

cute operational workflows such as restarting and migrating. Ac-

cording to our statistics, billions of metric series are monitored

and approximately 20.8% of them are seasonal. To handle these

sequence more effectively, the platform employs the BacktrackSTL

algorithm for decomposition.

In ECS anomaly scheduling platform, period identification is

operationalized as an offline process, distinct from the online de-

composition. Executed within MaxCompute [11], the period identi-

fication algorithm is implemented as a user-defined function (UDF),

which is harnessed daily to calculate the period length of all moni-

toring metric series. The results are then synced to the cloud-native

memory database Tair [14].

For online decomposition, BacktrackSTL consumes metric series

from Simple Log Service (SLS) [5], retrieves associated period length

from Tair, and leaves its decomposition results for downstream

tasks, e.g., anomaly detection. Considering the independence be-

tween series, it is deployed on Apache Flink [1] due to its horizontal

scalability. Specifically, it is implemented as a keyed function with

states, whose parameters are obtained from a broadcast stream. The

task is hosted on Ververica Platform (VVP) [4]. According to the

tests, each compute unit (CU)
1
can support about 127K throughput

per second, greatly reducing the machine cost.

On ECS anomaly scheduling platform, BacktrackSTL has been

continuously and stably running for over one year. During this time,

it helped the platform discover some real problems. For example,

the release of a control software may bring unexpected compu-

tational overhead on specific machines, leading to the feature of

high utilization on a certain CPU core. As shown in Figure 7(a), by

decomposing the count of node controllers with this feature, we

discovered this trend jump and timely notified the software owner.

6 Experimental Evaluation
6.1 Experiment Setup
6.1.1 Dataset. In this section, we conduct evaluations using three

datasets, including one synthetic dataset and two real datasets.

Figure 5 displays the synthetic dataset named SYNTHETIC, which

has a period of 200, with four trend jumps and a severe outlier.

Additionally, its seasonality components experience shifts with a

maximum of 5. As shown in Figure 6 and Figure 7, the two real

datasets are referred to as REAL1 and REAL2, which represent the

counts of logs with specific features from Alibaba Cloud. Their

period lengths are both 24.

1
CU is the resource unit of VVP. One CU is equal to 1 CPU core, 4 GiB of memory,

and 20 GB of local storage.

6.1.2 Baselines. Refer to Table 1, we compare the proposed Back-

trackSTL with existing STD algorithms. The offline algorithms in-

clude STL [16], SSA [22], TBATS [26] and RobustSTL [35, 37]. STR

[17] is not included due to its extremely high complexity. Based on a

slidingwindow, these offline algorithms can be applied to online sce-

narios, named Window-STL, Window-SSA, Window-TBATS and

Window-RobustSTL. Additionally, Online-RobustSTL, an online

variant of RobustSTL, and the native online algorithms OnlineSTL

[27] and OneShotSTL [23] are used for comparison as well.

In the experiment, we implement BacktrackSTL and reproduce

OnlineSTL and SSA faithfully in Java. We also use the public Java

implementations of STL [7] and OneShotSTL [3]. Moreover, since

other baselines have no public Java implementation and are diffi-

cult to reproduce because of dependencies, we have to use their

public implementations in other languages. For example, the public

repository SREWorks [6] provides the Python implementations of

RobustSTL and its variants while R package forecast [12] provides
the implementation of TBATS.

6.1.3 Hyper-Parameters. All STD algorithms require the period

length 𝑇 as a parameter. For generated datasets, without special

instructions, we always use the ground truth value, i.e., 𝑇 = 200.

For real datasets, RobustPeriod [36] is used to estimate their period

lengths.

For BacktrackSTL, we set 𝐾 = 2, 𝐿 = 4 and 𝑛 = 6 for all datasets.

Meanwhile, we set 𝐻 = 5 for the generated dataset and 𝐻 = 2

for the real ones. As for 𝛿 , we automatically determine it from the

initialization data. For each 𝑦𝑖 , we calculate its minimum distance

to its previous neighborhood, i.e., min |𝑦𝑖 − 𝑦 𝑗 | when 𝑖 −𝑇 − 𝐻 ≤
𝑗 ≤ 𝑖 −𝑇 + 𝐻 . Their standard deviation is used as the value of 𝛿 .

RobustSTL and its variants have dozens of parameters. For those

parameters with similar meanings to BacktrackSTL, we adopt the

same settings, such as 𝐾 and 𝐻 . Meanwhile, we set 𝛿𝑖 and 𝛿𝑑 to 𝐻

and 𝛿 in BacktrackSTL, respectively. The default values are used

for the remaining parameters.

Besides, STL does not require any parameters to be set. The

smoothing parameter 𝛾 of OnlineSTL is set to the recommended

value of 0.7 by the author. 𝐻 in OneShotSTL is consistent with

BacktrackSTL, while the other parameters are the default values or

determined automatically using the author-provided method.

6.1.4 Environment. The experimental evaluations are conducted

on an ECS (ecs.re4.10xlarge, 40 vCPU cores, 480 GiB memories)

from Alibaba Cloud. The operation system is 64-bit CentOS 7.9. All

implementations are run on JDK 1.8.0_382 or Python 3.6.8.

6.2 Evaluation on Accuracy
We first evaluate the accuracy of the decomposition algorithms. In

line with existing work like RobustSTL and OneShotSTL, we can

only provide quantitative results for synthetic datasets due to the

absence of decomposition ground truth in real datasets. Meanwhile,

visual results for all datasets are provided. Besides, to emphasize

the generalizability of BacktrackSTL, results for more real datasets

are shown in Appendix B.2.

Figure 5 visually displays the decomposition results of Backtrack-

STL, RobustSTL and OneShotSTL over SYNTHETIC. As shown in

Figure 5(a), BacktrackSTL shows a similar result to RobustSTL in (c),

BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique KDD ’24, August 25–29, 2024, Barcelona, Spain.

0 500 1000 1500 2000 2500 3000

0

5

10 Raw
Trend

0 500 1000 1500 2000 2500 3000

0

1
Season

0 500 1000 1500 2000 2500 3000

0

5

10
Residual

(a) BacktrackSTL

0 500 1000 1500 2000 2500 3000

0

5

10 Raw
Trend

0 500 1000 1500 2000 2500 3000

0

1
Season

0 500 1000 1500 2000 2500 3000

0

10
Residual

(b) OneShotSTL

0 500 1000 1500 2000 2500 3000

0

5

10 Raw
Trend

0 500 1000 1500 2000 2500 3000

0

1
Season

0 500 1000 1500 2000 2500 3000
0

5

10
Residual

(c) RobustSTL

Figure 5: Decomposition results on dataset SYNTHETIC

0 100 200 300 400

5000

10000 Raw
Trend

0 100 200 300 400
−5000

0

5000 Season

0 100 200 300 400

−5000

−2500

0
Residual

(a) BacktrackSTL on REAL1

0 100 200 300 400

5000

10000 Raw
Trend

0 100 200 300 400
−5000

0

Season

0 100 200 300 400
−5000

0

5000 Residual

(b) OneShotSTL on REAL1

0 100 200 300 400

5000

10000 Raw
Trend

0 100 200 300 400
−5000

0

5000 Season

0 100 200 300 400

−5000

0
Residual

(c) RobustSTL on REAL1

Figure 6: Decomposition results on dataset REAL1

capturing trend jumps and outliers well, while tolerating seasonal-

ity shift. It is worth noting that the figures of online algorithms are

drawn using the decomposition results without delay. Therefore, in

(a) and (b), outlier in the residual near each detected jump attests

to the inherent algorithm-independent presence of latency within

online scenarios. In contrast, this occurrence is notably absent for

offline RobustSTL in (c). Besides, for OneShotSTL in (b), due to

the 𝑙2-norm of the residual term in the optimization objective, it

cannot handle severe outliers well. At the same time, it also fails to

capture trend jumps, because the automatically determined regular

parameters are not suitable. Moreover, Table 3 shows the mean

absolute error (MAE) between the decomposition results and the

ground truth. The performance of BacktrackSTL is comparable to

RobustSTL, much better than other online algorithms.

The visual results of two real datasets are presented in Figure 6-7.

Similar to the results of SYNTHETIC, the decomposition of Back-

trackSTL is comparable to that of RobustSTL, and significantly

outperforms OneShotSTL. Specifically, as shown in Figure 6(a), the

dip at time 348 is left in the residual, which makes it easy to be

detected in downstream anomaly detection tasks. However, since

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

0 100 200 300 400 500 600

3000

3500

4000 Raw
Trend

0 100 200 300 400 500 600

−200

0

200

400 Season

0 100 200 300 400 500 600
−400

−200

0

200 Residual

(a) BacktrackSTL on REAL2

0 100 200 300 400 500 600

2500

3000

3500

4000 Raw
Trend

0 100 200 300 400 500 600

−250

0

250 Season

0 100 200 300 400 500 600

−200

0

200 Residual

(b) OneShotSTL on REAL2

0 100 200 300 400 500 600

3000

3500

4000 Raw
Trend

0 100 200 300 400 500 600

−200

0

200
Season

0 100 200 300 400 500 600
−400

−200

0

200 Residual

(c) RobustSTL on REAL2

Figure 7: Decomposition results on dataset REAL2

Table 3: Decomposition comparison over SYNTHETIC

Algorithm Type Trend MAE Seasonality MAE

STL Offline 0.085 0.017
SSA Offline 0.169 0.152

TBATS Offline 0.066 0.064

RobustSTL Offline 0.010 0.027

Window-STL Online 0.165 0.066

Window-SSA Online 0.444 0.426

Window-TBATS Online 0.339 0.115

Window-RobustSTL Online 0.071 0.030

Online-RobustSTL Online 0.073 0.030

OnlineSTL Online 0.368 0.303

OneShotSTL Online 0.150 0.077

BacktrackSTL Online 0.012 0.023

the optimization objective of OneShotSTL does not sufficiently tol-

erate the fluctuation of seasonality, there are still some periodic

components in the residuals in Figure 6(b). Additionally, at time

0-300 in Figure 7(a), BacktrackSTL effectively decomposes the series

with a smoothly rising trend. Outlier-resilient smoothing regards

the moving average without outliers as the extracted trend, thereby

accurately capturing the smooth ascent of the series.

6.3 Evaluation on Time Efficiency
Next, we evaluate the time efficiency of the algorithms. We extend

the dataset SYNTHETIC to obtain a sufficient long time series. Since

the time complexity of most algorithms is related to the period

length𝑇 , Figure 8 shows the online update latency of a single value

with respect to 𝑇 , where 𝑇 takes values from 200 to 12800.

200 400 800 1600 3200 6400 12800
T

100

102

104

106

108

1010

Up
da

te
 L

at
en

cy
 (u

s)

OnlineSTL
OneShotSTL
BacktrackSTL
Window-STL

Window-SSA
Window-TBATS
Window-RobustSTL
Online-RobustSTL

Figure 8: Comparison on update latency

The latency of BacktrackSTL is approximately 1.6𝜇𝑠 per value,

which represents a 10
3 − 10

11× improvement over offline algo-

rithms’ online variants, such as Window-STL, etc. This substantial

improvement is chiefly attributable to the inherent algorithmic time

complexities rather than variations across programming languages.

Meanwhile, the latency is independent of the period length, which

is consistent with our theoretical complexity of 𝑂 (1). Compared to

OneShotSTL with complexity of𝑂 (𝐼), BacktrackSTL achieves about
15× improvement because it does not require iteration (maximum

iterations 𝐼 = 8 for OneShotSTL) and has a smaller constant com-

plexity. Additionally, it is also significantly faster than OnlineSTL

with update complexity 𝑂 (𝑇), 5× when 𝑇 = 200 and 400× when

𝑇 = 12800.

6.4 Evaluation on Robustness
The period length𝑇 is an important parameter of BacktrackSTL. For

real datasets, however, the value of𝑇 discovered by algorithms may

BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique KDD ’24, August 25–29, 2024, Barcelona, Spain.

0 5 10 15 20
ΔT

0.0

0.1

0.2

0.3

M
AE

H=0
H=20

(a) Trend MAE

0 5 10 15 20
ΔT

0.0

0.1

0.2

0.3

M
AE

H=0
H=20

(b) Seasonality MAE

Figure 9: Robustness on period length

1 4 16 64 256
N

0

1

2

3

La
te

nc
y

(u
s) Latency

(a) Latency

1 4 16 64 256
N

0.0

0.2

0.4

M
AE

Trend
Season

(b) MAE

Figure 10: Influence of N-Sigma

not always be true. Thus, we evaluate the tolerance of BacktrackSTL

to errors in 𝑇 . Specially, we add a period length error Δ𝑇 to 𝑇 and

evaluate its MAE for the trend and seasonality. The values of Δ𝑇
are set to {0, 5, 10, 15, 20}.

Figure 9 shows the experimental results. Without extra process-

ing, i.e., 𝐻 = 0, the MAE of trend and seasonality increase with Δ𝑇
as shown by the blue line. Actually, the impact of an incorrect pe-

riod length 𝑇 can be weakened by a proper neighborhood width 𝐻 .

If the width is large enough to cover the period error, e.g., 𝐻 = 20,

the MAE significantly decrease, as shown by the orange line.

6.5 Influence of N-Sigma Strategy
In outlier-resilient smoothing in Section 4.2, we employ the N-sigma

strategy for outlier detection. Consequently, 𝑁 serves as a critical

parameter in distinguishing noise from outliers. Thus, To explore

the impact of varying 𝑁 , we perform an evaluation of the average

update latency and the trend/seasonality MAE with varying𝐾 . This

evaluation is conducted on the SYNTHETIC dataset. The results

are shown in Figure 10 with logarithmic-scaled horizontal axis.

As the parameter 𝑁 increases, a greater number of outliers are

classified as noise, leading to a reduction in the number of de-

tected jumps. This, in turn, results in a lesser number of backtracks

and marginally reduces latency, as depicted in (a). Concerning the

trend/seasonality MAE depicted in (b), we observe that both ex-

cessively small and large values of 𝑁 yield a detrimental effect.

However, the performance retains robustness over a substantially

wide range of 𝑁 , suggesting that the parameter is not difficult to

configure. In light of the commonly adopted N-sigma strategy and

the infrequency of outliers, we set 𝑁 = 6 uniformly in the proposal.

7 Related Work
STD has been the subject of extensive research for several decades.

Among them, STL [16] is one of the most famous algorithms, which

utilizes local regression (LOESS) smoothing to extract trend and

seasonality, iterating until convergence. Meanwhile, SSA [22] folds

the time series into a matrix based on the period length and em-

ploys singular value decomposition (SVD) to extract the seasonality.

Moreover, TBATS [26] builds a state space model for time series and

solves it with maximum likelihood estimation (MLE), thereby pro-

viding confidence intervals for the results. STR [17] combines trend

and seasonality into a joint optimization function, while its variant

Robust-STR [17] further enhances the algorithm’s robustness by

introducing the 𝑙1-norm. After that, RobustSTL [35] is proposed,

which utilizes 𝑙1-norm optimization to extract trend in the presence

of trend jumps and outliers, and employs non-local seasonal filter-

ing to extract seasonality with shifts. Furthermore, Fast RobustSTL

[37] extends RobustSTL to support multiple seasonality and speeds

up it with ADMM algorithm.

In recent years, researchers have focused more on the online

scenario. The most straightforward online strategy is to run the

above offline algorithmswithin a slidingwindow. However, the time

cost is extremely high. For instance, the time complexity of each

decomposition is 𝑂 (𝐼𝑊 2) for RobustSTL on the sliding window.

To address the efficiency issue, several native online STD al-

gorithms have been proposed. OnlineSTL [27] is the first online

algorithm, which decomposes time series 100× faster than tradi-

tional STL. However, its complexity is still dependent with period

length, making it less effective with long-period time series. On

the other hand, OneShotSTL [23] calculates the trend and seasonal-

ity using a joint optimization function and utilizes linear systems

to approximate the solution. However, this approximation still re-

quires iterations to approach the optimal solution, leaving space

for optimization in terms of time efficiency. Different from the

above algorithms, BacktrackSTL combines period-insensitive steps

such as outlier-resilient smoothing and non-local seasonal filtering,

achieving much lower update latency without iterations.

8 Conclusion
In this paper, we introduce BacktrackSTL, a novel seasonal-trend

decomposition algorithm with𝑂 (1) time complexity. Our investiga-

tion highlights that the main bottleneck for RobustSTL in terms of

time efficiency is the high-complexity 𝑙1-norm optimization though

it is robust to outliers and trend jumps. Therefore, we combine

outlier-resilient smoothing and backtrack strategy to replace the

optimization, and inherit non-local seasonal filtering, resulting in a

significant improvement in time efficiency while still addressing

trend jumps, seasonality shifts, and outliers. Our experimental re-

sults demonstrate that our algorithm BacktrackSTL decomposes a

value within 1.6𝜇𝑠 , which is 15× faster than state-of-the-art online

algorithms.

Acknowledgments
The authors would like to thank all reviewers and chairs for their

helpful comments, and Prof. Shaoxu Song and Dr. Chengguang

Fang for their encouragements and helps. Haoyu Wang (https:

//wanghy.pages.dev/) is the corresponding author.

https://wanghy.pages.dev/
https://wanghy.pages.dev/

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

References
[1] 2023. Apache Flink. https://flink.apache.org/

[2] 2023. Elastic Compute Service (ECS). https://www.alibabacloud.com/help/en/

ecs/

[3] 2023. OneShotSTL. https://github.com/xiao-he/OneShotSTL

[4] 2023. Realtime Compute for Apache Flink. https://www.alibabacloud.com/help/

en/flink/

[5] 2023. Simple Log Service (SLS). https://www.alibabacloud.com/help/en/sls/

[6] 2023. SREWorks. https://github.com/alibaba/SREWorks/

[7] 2023. STL. https://github.com/ServiceNow/stl-decomp-4j

[8] 2024. Artifact of BacktrackSTL. https://github.com/543202718/BacktrackSTL

[9] 2024. Daily Minimum Temperatures in Melbourne. https://www.kaggle.com/

datasets/samfaraday/daily-minimum-temperatures-in-me

[10] 2024. Daily total female births in California, 1959. https://www.kaggle.com/

datasets/dougcresswell/daily-total-female-births-in-california-1959

[11] 2024. MaxCompute. https://www.aliyun.com/product/odps

[12] 2024. R package foreacst. https://cran.r-project.org/web/packages/forecast/

index.html

[13] 2024. Sunspots. https://www.kaggle.com/datasets/robervalt/sunspots

[14] 2024. Tair. https://www.aliyun.com/product/apsaradb/kvstore/tair

[15] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed

Meftah, and Emmanuel Remy. 2021. Unsupervised and scalable subsequence

anomaly detection in large data series. VLDB J. 30, 6 (2021), 909–931. https:

//doi.org/10.1007/s00778-021-00655-8

[16] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning.

1990. STL: A seasonal-trend decomposition. J. Off. Stat 6, 1 (1990), 3–73.
[17] Alexander Dokumentov, Rob J Hyndman, et al. 2015. STR: A seasonal-trend

decomposition procedure based on regression. Monash econometrics and business
statistics working papers 13, 15 (2015), 2015–13.

[18] Hadi Fanaee-T. 2013. Bike Sharing Dataset. UCI Machine Learning Repository.

DOI: https://doi.org/10.24432/C5W894.

[19] Hadi Fanaee-T and Joao Gama. 2013. Event labeling combining ensemble detec-

tors and background knowledge. Progress in Artificial Intelligence (2013), 1–15.
https://doi.org/10.1007/s13748-013-0040-3

[20] Valentin Flunkert, David Salinas, and Jan Gasthaus. 2017. DeepAR: Probabilistic

Forecasting with Autoregressive Recurrent Networks. CoRR abs/1704.04110

(2017). arXiv:1704.04110 http://arxiv.org/abs/1704.04110

[21] Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang Sun, and

Huan Xu. 2020. RobustTAD: Robust Time Series Anomaly Detection via De-

composition and Convolutional Neural Networks. CoRR abs/2002.09545 (2020).

arXiv:2002.09545 https://arxiv.org/abs/2002.09545

[22] Nina Golyandina and E Osipov. 2007. The “Caterpillar”-SSA method for analysis

of time series with missing values. Journal of Statistical planning and Inference
137, 8 (2007), 2642–2653.

[23] Xiao He, Ye Li, Jian Tan, Bin Wu, and Feifei Li. 2023. OneShotSTL: One-Shot

Seasonal-Trend Decomposition For Online Time Series Anomaly Detection And

Forecasting. Proc. VLDB Endow. 16, 6 (2023), 1399–1412. https://www.vldb.org/

pvldb/vol16/p1399-he.pdf

[24] Scott H Holan and Nalini Ravishanker. 2018. Time series clustering and classifi-

cation via frequency domain methods. Wiley Interdisciplinary Reviews: Computa-
tional Statistics 10, 6 (2018), e1444.

[25] Davor Horvatic, H Eugene Stanley, and Boris Podobnik. 2011. Detrended cross-

correlation analysis for non-stationary time series with periodic trends. Euro-
physics Letters 94, 1 (2011), 18007.

[26] Alysha M De Livera and Rob J Hyndman. 2011. Forecasting time series with

complex seasonal patterns using exponential smoothing. Monash Econometrics &
Business Statistics Working Papers 106, 496 (2011), 1513–1527.

[27] Abhinav Mishra, Ram Sriharsha, and Sichen Zhong. 2022. OnlineSTL: Scaling

Time Series Decomposition by 100x. Proc. VLDB Endow. 15, 7 (2022), 1417–1425.
https://www.vldb.org/pvldb/vol15/p1417-mishra.pdf

[28] Denise R. Osborn. 1995. Moving Average Detrending and the Analysis of Business

Cycles. Oxford Bulletin of Economics and Statistics 57, 4 (1995), 547–558.
[29] Donald B Percival and Andrew T Walden. 2000. Wavelet methods for time series

analysis. Vol. 4. Cambridge university press.

[30] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen Kurths. 2011. Com-

parison of correlation analysis techniques for irregularly sampled time series.

Nonlinear Processes in Geophysics 18, 3 (2011), 389–404.
[31] Manel Rhif, Ali Ben Abbes, Imed Riadh Farah, Beatriz Martínez, and Yanfang

Sang. 2019. Wavelet transform application for/in non-stationary time-series

analysis: A review. Applied Sciences 9, 7 (2019), 1345.
[32] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2015. SCREEN:

Stream Data Cleaning under Speed Constraints. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G.

Ives (Eds.). ACM, 827–841. https://doi.org/10.1145/2723372.2723730

[33] Haoyu Wang and Shaoxu Song. 2022. Frequency Domain Data Encoding in

Apache IoTDB. Proc. VLDB Endow. 16, 2 (2022), 282–290. https://doi.org/10.

14778/3565816.3565829

[34] Haoyu Wang, Aoqian Zhang, Shaoxu Song, and Jianmin Wang. 2023. Streaming

data cleaning based on speed change. VLDB J. (2023). https://doi.org/10.1007/

s00778-023-00796-y

[35] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo

Zhu. 2019. RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for

Long Time Series. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
AAAI Press, 5409–5416. https://doi.org/10.1609/aaai.v33i01.33015409

[36] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu. 2021.

RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity Detection.

In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh

Srivastava (Eds.). ACM, 2328–2337. https://doi.org/10.1145/3448016.3452779

[37] Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. 2020. Fast RobustSTL: Ef-

ficient and Robust Seasonal-Trend Decomposition for Time Series with Com-

plex Patterns. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, Rajesh
Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM, 2203–2213.

https://doi.org/10.1145/3394486.3403271

[38] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Anomaly

Transformer: Time Series Anomaly Detection with Association Discrepancy. In

The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net. https://openreview.net/forum?id=

LzQQ89U1qm_

[39] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S. Yu. 2017. Time Series

Data Cleaning: From Anomaly Detection to Anomaly Repairing. Proc. VLDB
Endow. 10, 10 (2017), 1046–1057. https://doi.org/10.14778/3115404.3115410

https://flink.apache.org/
https://www.alibabacloud.com/help/en/ecs/
https://www.alibabacloud.com/help/en/ecs/
https://github.com/xiao-he/OneShotSTL
https://www.alibabacloud.com/help/en/flink/
https://www.alibabacloud.com/help/en/flink/
https://www.alibabacloud.com/help/en/sls/
https://github.com/alibaba/SREWorks/
https://github.com/ServiceNow/stl-decomp-4j
https://github.com/543202718/BacktrackSTL
https://www.kaggle.com/datasets/samfaraday/daily-minimum-temperatures-in-me
https://www.kaggle.com/datasets/samfaraday/daily-minimum-temperatures-in-me
https://www.kaggle.com/datasets/dougcresswell/daily-total-female-births-in-california-1959
https://www.kaggle.com/datasets/dougcresswell/daily-total-female-births-in-california-1959
https://www.aliyun.com/product/odps
https://cran.r-project.org/web/packages/forecast/index.html
https://cran.r-project.org/web/packages/forecast/index.html
https://www.kaggle.com/datasets/robervalt/sunspots
https://www.aliyun.com/product/apsaradb/kvstore/tair
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1007/s13748-013-0040-3
https://arxiv.org/abs/1704.04110
http://arxiv.org/abs/1704.04110
https://arxiv.org/abs/2002.09545
https://arxiv.org/abs/2002.09545
https://www.vldb.org/pvldb/vol16/p1399-he.pdf
https://www.vldb.org/pvldb/vol16/p1399-he.pdf
https://www.vldb.org/pvldb/vol15/p1417-mishra.pdf
https://doi.org/10.1145/2723372.2723730
https://doi.org/10.14778/3565816.3565829
https://doi.org/10.14778/3565816.3565829
https://doi.org/10.1007/s00778-023-00796-y
https://doi.org/10.1007/s00778-023-00796-y
https://doi.org/10.1609/aaai.v33i01.33015409
https://doi.org/10.1145/3448016.3452779
https://doi.org/10.1145/3394486.3403271
https://openreview.net/forum?id=LzQQ89U1qm_
https://openreview.net/forum?id=LzQQ89U1qm_
https://doi.org/10.14778/3115404.3115410

BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique KDD ’24, August 25–29, 2024, Barcelona, Spain.

1 3 5 7 9
K

0

4

8

La
te

nc
y

(u
s) Latency

(a) Latency

1 3 5 7 9
K

0.000

0.005

0.010

Tr
en

d
M

AE
0.00

0.02

0.04

Se
as

on
al

ity
 M

AETrend
Season

(b) MAE

Figure 11: Influence of window size𝑊 = (𝑘 + 1)𝑇

A BacktrackSTL Initialization
We use a simple offline algorithm in initialization with the first

𝑊 = (𝐾 + 1)𝑇 values. The first step is jump detection. We calculate

a new sequence 𝑑𝑇+1...𝑊 −𝑇+1 as follows:

𝑑𝑖 =
1

𝑇
(
𝑖+𝑇−1∑︁
𝑗=𝑖

𝑦 𝑗 −
𝑖−1∑︁
𝑗=𝑖−𝑇

𝑦 𝑗), 𝑇 + 1 ≤ 𝑖 ≤𝑊 −𝑇 + 1 (14)

Subsequently, we identify the local maximum/minimum values

in the sequence as candidate jump points. For a candidate point 𝑑𝑖 ,

if the difference before and after it exceeds the N-Sigma constraint,

it is classified as a jump point. Formally, a jump point is a candidate

which satisfies the following formula:

|𝑑𝑖 | > 𝑛 ∗max{𝑠𝑡𝑑 (𝑦𝑖 ...𝑖+𝑇−1), 𝑠𝑡𝑑 (𝑦𝑖−𝑇 ...𝑖−1)} (15)

Suppose we have𝑚 jump points, donated as 𝑃1, 𝑃2, . . . , 𝑃𝑚 . Let

𝑃0 = 0 and 𝑃𝑚+1 = 𝑊 + 1, we divide the sequence into 𝑚 + 1
segments based on the jump points. The 𝑘-th segment starts from

index 𝑃𝑘−1 and ends at index 𝑃𝑘 − 1, formulated as 𝑦𝑃𝑘−1 ...𝑃𝑘−1.
After that, we calculate the moving average of length 𝑇 as the

trend for each segment. Specifically, if the segment is shorter than

𝑇 , i.e., 𝑃𝑘 − 𝑃𝑘−1 < 𝑇 , the estimated trend term for any point 𝑡

within the segment is given by

𝜏𝑡 =𝑚𝑒𝑎𝑛(𝑦𝑃𝑘−1 ...𝑃𝑘−1) (16)

Otherwise, the trend is as follows:

𝜏𝑡 =

{
𝑚𝑒𝑎𝑛(𝑦𝑡 ...𝑡+𝑇−1) 𝑖 𝑓 𝑡 +𝑇 ≤ 𝑃𝑘
𝑚𝑒𝑎𝑛(𝑦𝑃𝑘−𝑇 ...𝑃𝑘−1) 𝑖 𝑓 𝑡 +𝑇 > 𝑃𝑘

(17)

Next, we employ the non-local seasonal filtering in Section 4.3

to calculate the seasonality component. If the neighborhood Ω is

empty, we directly regard the de-trend value 𝑦′𝑡 as the seasonal

component. Finally, we obtain the residual by subtracting the trend

and seasonal component from the original values.

B Additional Experiments
B.1 Influence of Window Size
For online STD algorithms, the choice of window size𝑊 is a pivotal

factor that influences both the accuracy and time efficiency of the

approach. Within the BacktrackSTL framework,𝑊 is defined as

(𝐾 + 1)𝑇 , where 𝑇 represents the data-driven period length and

𝐾 is a user-adjustable parameter. Thus, similar to the experiments

in Section 6.5, we perform an evaluation to explore the impact of

varying window sizes. It is conducted on the synthetic dataset (𝑇 =

200) described in Section 6.3, with results illustrated in Figure 11.

As illustrated in Figure 11(a), the update latency exhibits a linear

increase with the increment of 𝐾 , which aligns with our theoretical

analysis provided in Proposition 4.1 Observations from Figure 11(b)

indicate that the seasonality MAE remains relatively stable across

the evaluated range. Meanwhile, the trend MAE decreases initially

and then stabilizes for values of 𝐾 ≥ 2, a phenomenon largely

attributed to inadequate smoothing at smaller window sizes. In light

of the analysis presented, and to effectively balance time efficiency

with decomposition accuracy, 𝐾 = 2 is selected for all experiments

in this proposal.

B.2 Visual Decomposition Results
To demonstrate the generalizability of BacktrackSTL, we conduct ex-

periments on an extended range of datasets. The following datasets

are utilized for this purpose:

• TEMPERATURE [9, 19]: The daily minimum temperature in

Melbourne, Australia from 1981 to 1990. The series length is

3650 with 𝑇 = 365.

• SUNSPOT [13]: The monthly count of observed sunspots

from 1749 to 1983. The series length is 2820 with 𝑇 = 120.

• BIKE [18]: The daily bike sharing rental totals in Capital

bike-share system from 2011 to 2012. The series length is

731 with 𝑇 = 7.

• BIRTH [10]: The daily number of female births in California

in 1959. The series length is 365 with 𝑇 = 7.

• CPU1: The CPU utilization of a certain virtual machine in

Alibaba Cloud over a week. The sampling interval is one

minute. The series length is 10080 with 𝑇 = 1440.

• CPU2: The CPU utilization of another virtual machine in

Alibaba Cloud. The series length is also 10080 with𝑇 = 1440.

Figure 12 shows the visual decomposition results of Backtrack-

STL on above six datasets. Since there are too many periods in BIKE

and BIRTH datasets, we only display part of the series for clarity.

As demonstrated in (a), it is not surprising that TEMPERATURE

dataset, characterized by its distinct periodic patterns, is effectively

decomposed by BacktrackSTL. In the case of SUNSPOT dataset

presented in (b), despite the noticeable variation in the amplitude

of seasonal components, BacktrackSTL maintains its robustness,

attributed to the adaptability granted by the 𝛿 parameter.

For BIKE dataset in (c) and BIRTH dataset in (d), although their

periodicities are not as strong as those in the other datasets, the de-

composition still aligns well with the data characteristics. Especially,

BacktrackSTL extracts the rising trend in (c) successfully.

For the two CPU datasets with large period length and long series

in (e) and (f), BacktrackSTL also exhibits proficient decomposition

capability. It accurately extracts the smooth trend and the seasonal

components with shifts, leaving a minimal number of outliers in

the residual components.

In summary, BacktrackSTL exhibits great performance across

datasets from various domains, demonstrating its generalizabil-

ity. The effectiveness of BacktrackSTL is unaffected by the period

length or series length of the dataset. Moreover, given that the

complexity of BacktrackSTL is 𝑂 (1), which is independent of the

period length𝑇 , it is an appropriate solution for periodic time series

decomposition.

KDD ’24, August 25–29, 2024, Barcelona, Spain. Haoyu Wang et al.

0 1000 2000 3000
0

10

20
Raw
Trend

0 1000 2000 3000
−10

0

10 Season

0 1000 2000 3000

0

5 Residual

(a) TEMPERATURE

0 500 1000 1500 2000
0

100

200
Raw
Trend

0 500 1000 1500 2000

0

100 Season

0 500 1000 1500 2000

0

50

100
Residual

(b) SUNSPOT

400 420 440 460 480 500
0

2500
5000
7500

10000
Raw
Trend

400 420 440 460 480 500

−2000

0

2000

4000
Season

400 420 440 460 480 500

−2000

0

2000 Residual

(c) BIKE

120 130 140 150 160 170
20

40

60

80
Raw
Trend

120 130 140 150 160 170

−10

0

10
Season

120 130 140 150 160 170
−5

0

5
Residual

(d) BIRTH

0 2000 4000 6000 8000 10000

20

40

60 Raw
Trend

0 2000 4000 6000 8000 10000

0

20

40 Season

0 2000 4000 6000 8000 10000

0

10 Residual

(e) CPU1

0 2000 4000 6000 8000 10000

20

40 Raw
Trend

0 2000 4000 6000 8000 10000

0

20

Season

0 2000 4000 6000 8000 10000

0

10

20
Residual

(f) CPU2

Figure 12: Decomposition results on various datasets

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Decomposition Model
	2.2 Online Decomposition

	3 Motivation
	3.1 Analysis on Time Complexity
	3.2 Analysis on Effectiveness

	4 BacktrackSTL Decomposition
	4.1 Overview
	4.2 Outlier-Resilient Smoothing
	4.3 Non-local Seasonal Filtering
	4.4 Jump Detection
	4.5 Backtrack
	4.6 Summary

	5 Deployment
	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Evaluation on Accuracy
	6.3 Evaluation on Time Efficiency
	6.4 Evaluation on Robustness
	6.5 Influence of N-Sigma Strategy

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A BacktrackSTL Initialization
	B Additional Experiments
	B.1 Influence of Window Size
	B.2 Visual Decomposition Results

