#### BacktrackSTL: Ultra-Fast Online Seasonal-Trend Decomposition with Backtrack Technique

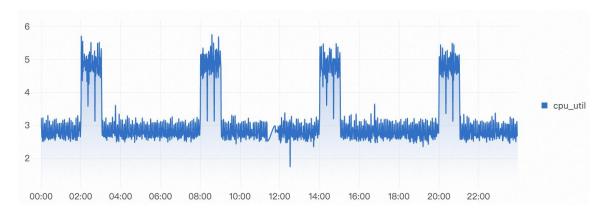
Haoyu Wang, Hongke Guo, Zhaoliang Zhu, You Zhang, Yu Zhou, Xudong Zheng Alibaba Cloud, Alibaba Group

ACM SIGKDD 2024

## Background

- Periodicity: time series which exhibit repeating segments.
  - **CPU** usage (6-hour period):
    - Scheduled Task









#### **Problem Statement**

- Online seasonal-trend decomposition (STD)
  - STD decomposes a periodic time series into trend, seasonality, and residual components.
  - □ In online scenario, decomposition is incremental with limited memory.

$$y_t = \tau_t + s_t + r_t$$
Seasonality
$$+$$
Trend
$$+$$
Residual

## **Efficiency Challenge**

In Alibaba Cloud, time efficiency has the highest priority in the design of STD.

- □ Save computational cost
- □ Reduce response latency

Ο...



1,000,000,000+ Metrics
 10,000,000+ VMs
 5,000+ Clusters
 30+ Regions

#### **Related Work Comparison**

The complexities of existing algorithms still need improvement.

| Algorithm    | Trend | Seasonality Outlier |           | Online       |
|--------------|-------|---------------------|-----------|--------------|
| Algorithm    | Jump  | Shift               | Tolerance | Complexity   |
| STL          | No    | No                  | No        | -            |
| TBATS        | Yes   | No                  | No        | -            |
| STR          | No    | Yes                 | Yes       | -            |
| SSA          | No    | No                  | No        | -            |
| RobustSTL    | Yes   | Yes                 | Yes       | -            |
| OnlineSTL    | No    | No                  | No        | O(T)         |
| OneShotSTL   | Yes   | Yes                 | No        | O(I)         |
| BacktrackSTL | Yes   | Yes                 | Yes       | <b>O</b> (1) |

### Contribution

#### Time efficiency

BacktrackSTL is the first non-iterative online seasonal-trend decomposition algorithm with period-independent O(1) time complexity.

#### Accuracy

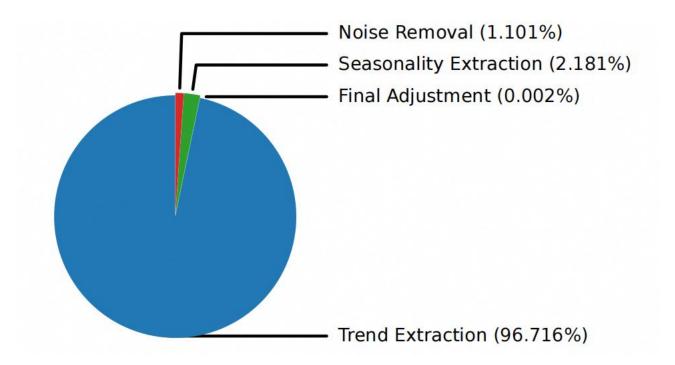
BacktrackSTL combines outlier-resilient smoothing, non-local seasonal filtering and backtrack technique to achieve the **robustness to outlier**, **seasonality shift and trend jump**.

#### Deployment

BacktrackSTL is deployed based on Apache Flink in the production environment of Alibaba Cloud for over a year.

### **Motivation**

- Time cost analysis on RobustSTL
  - □ **Trend extraction** stage consumes the majority of the time, which solves an optimization problem based on the L1-norm.

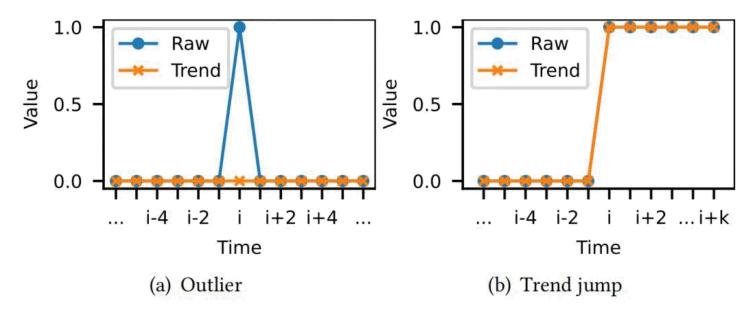


### Motivation

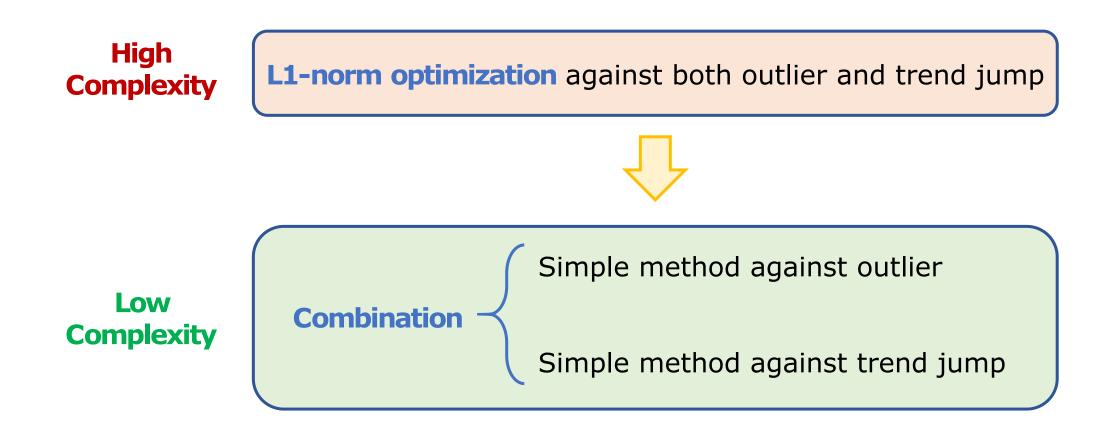
- Effectiveness of L1-norm optimization
  - Optimization goal

$$\min_{\tau_{1\dots N}} \sum_{t=T+1}^{N} |(y_t - \tau_t) - (y_{t-T} - \tau_{t-T})| + \lambda_1 \sum_{t=2}^{N} |\tau_t - \tau_{t-1}| + \lambda_2 \sum_{t=3}^{N} |\tau_t - 2\tau_{t-1} + \tau_{t-2}|$$

Robust to both outlier and trend jump

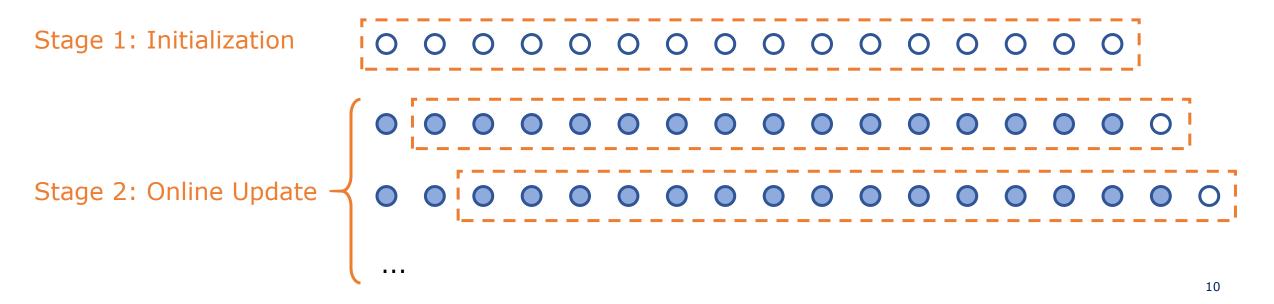


#### **Motivation**

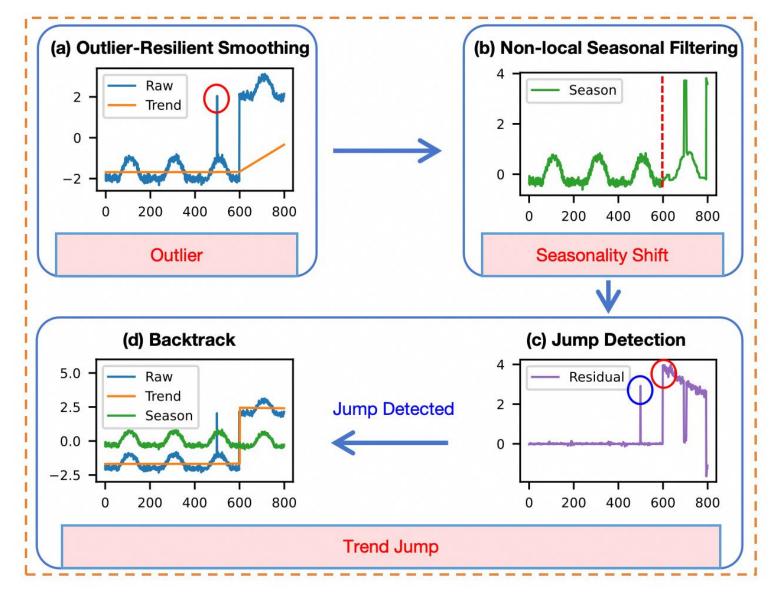


#### BacktrackSTL

- Limited memory => Sliding window
  - **D** Window size: W = (K+1)T
- Decomposition history => Initialization + Online update
  - □ Initialization stage decomposes all values in the first window (conducts **once**)
  - □ Online update stage decomposes the last value in the window with the history



#### **Online Update**



#### **Outlier-Resilient Smoothing**

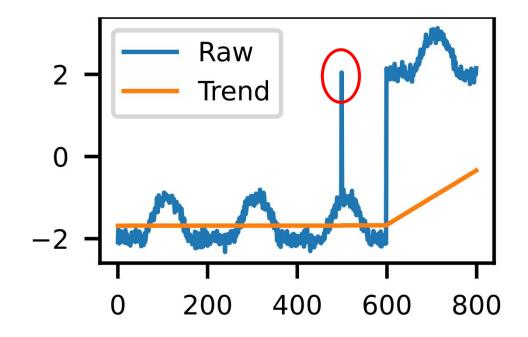
Moving average smoothing

$$\tau_t = \frac{1}{W} \sum_{i=t-W+1}^t y_i = \frac{1}{W} \sum_{i=t-W+1}^t (\tau_i + s_i + r_i)$$

- Outlier-resilient mechanism
  - Detect with dynamic N-Sigma
  - **D** Repair to reference value

$$\hat{y_t} = \tau_{t-1} + \arg\min_{s_i, i \in \Omega} |s_i - (y_t - \tau_{t-1})|$$
$$\Omega = \{i | (t' = t - kT, i = t' \pm h)\}$$
$$k = 1, 2, \dots, K; h = 0, 1, \dots, H$$

Time complexity: O(KH) ~ O(1)

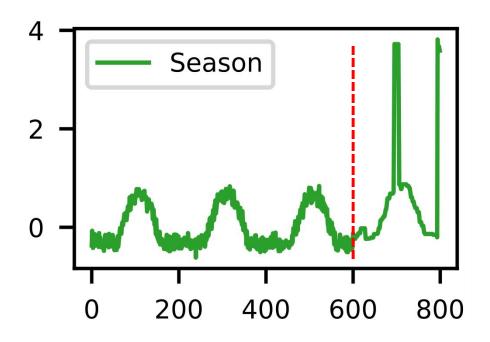


#### **Non-local Seasonal Filtering**

- Proposed by RobustSTL (AAAI 19)
- Robustness to seasonality shift

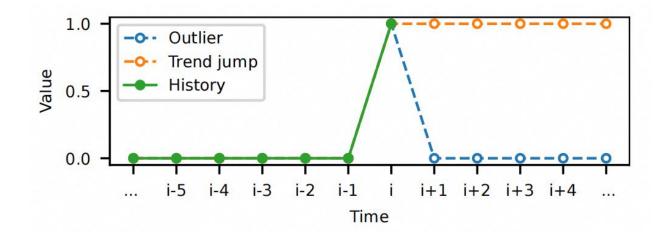
$$s_{t} = \sum_{j \in \Omega} w_{j}^{t} y_{j}'$$
$$w_{j}^{t} = \frac{1}{z} \exp\{-\frac{(j-t')^{2}}{2H^{2}} - \frac{(y_{j}' - y_{t}')^{2}}{2\delta^{2}}\}$$
$$y_{j}' = y_{j} - \tau_{j}$$

■ Time complexity: O(KH) ~ O(1)



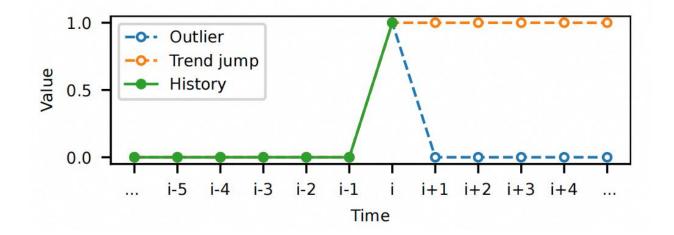
#### **Jump Detection**

Decision is naturally **delayed** in online scenario



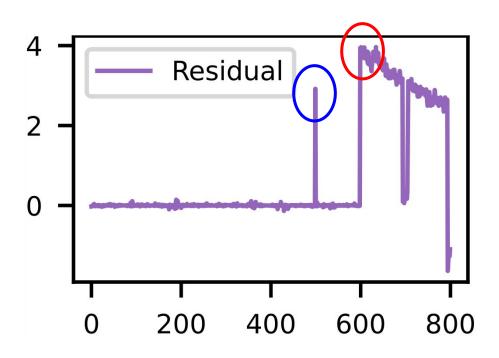
#### **Jump Detection**

Decision is naturally **delayed** in online scenario



Jump leads to consecutive high residuals

■ Time complexity: O(1)

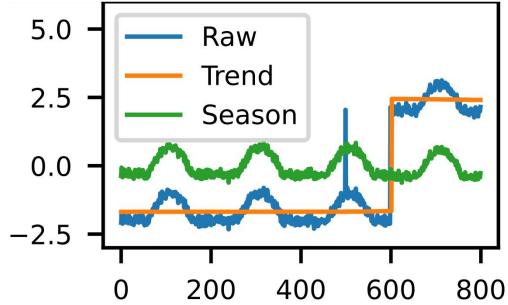


### Backtrack

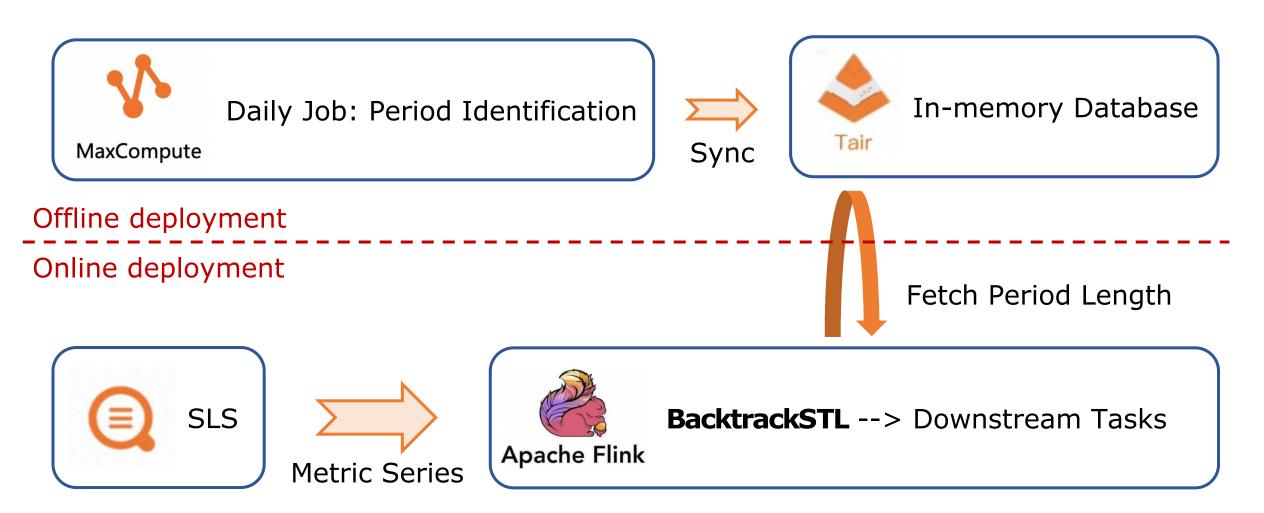
- Correct decomposition after a jump
  - □ All trends are estimated as a constant

$$\overline{\tau} = \frac{1}{L} \sum_{i=t-L+1}^{t} y_i - s_{i-T}$$

- Seasonal components are estimated with non-local seasonal filtering
- Only conduct when a jump is detected
   Extremely low frequency
   Almost no influence on time complexity



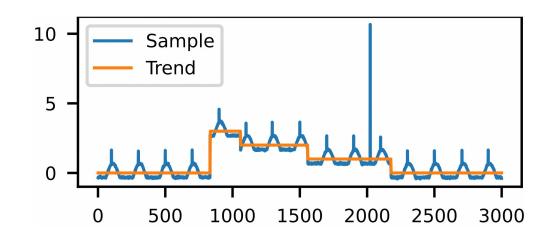
## Deployment



## **Experiment Setup**

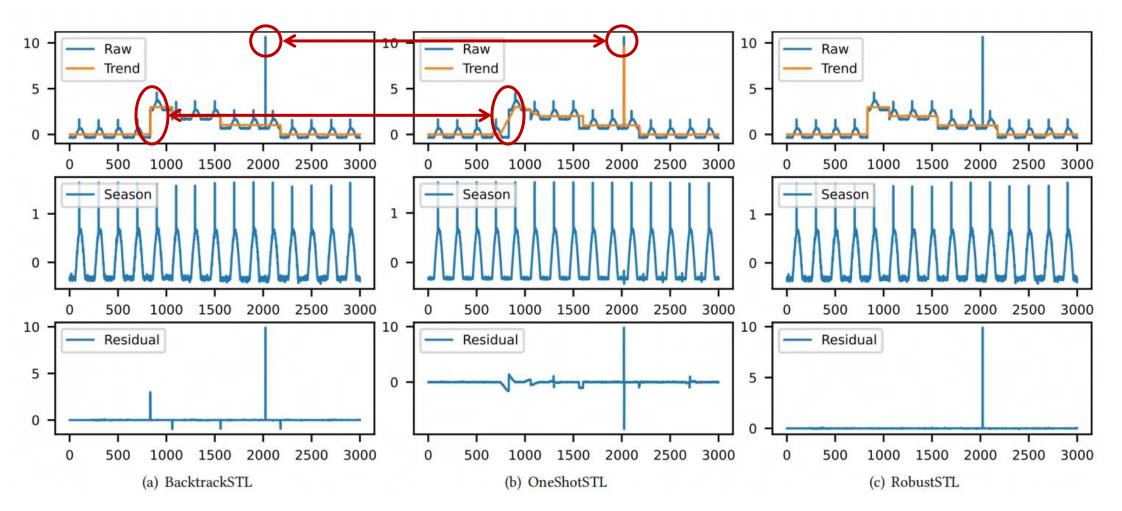
#### Environment

- □ VM: ecs.re4.10xlarge (40 vCPU cores + 480 GiB memories)
- **D** OS: 64-bit CentOS 7.9
- Synthetic Dataset
  - □ Series length 3000 (T=200)
  - □ 4 trend jumps and 1 severe outlier
  - □ Seasonal shifts with a maximum of 5
- Algorithm
  - □ Offline: STL, SSA, TBATS, RobustSTL
  - Online: Window-STL, Window-SSA, Window-TBATS, Window-RobustSTL, Online-RobustSTL, OnlineSTL, OneShotSTL, BacktrackSTL



#### Accuracy

BacktrackSTL is as accurate as offline RobustSTL, better than OneShotSTL.



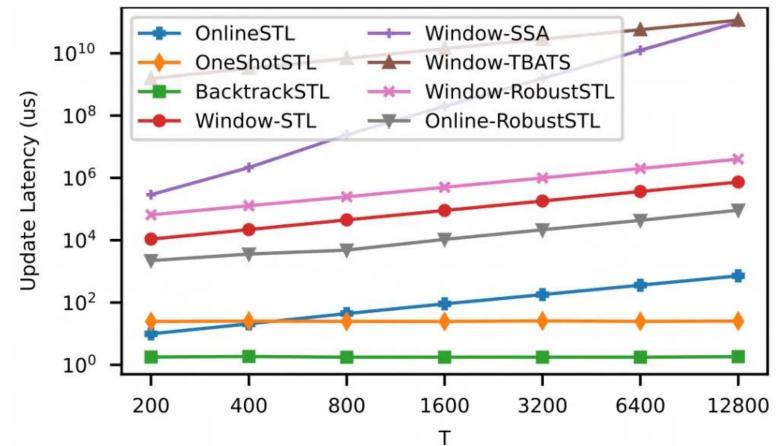
#### Accuracy

BacktrackSTL is as accuracy as offline RobustSTL, better than OneShotSTL.

| Algorithm        | Type    | Trend MAE | Seasonality MAE |
|------------------|---------|-----------|-----------------|
| STL              | Offline | 0.085     | 0.017           |
| SSA              | Offline | 0.169     | 0.152           |
| TBATS            | Offline | 0.066     | 0.064           |
| RobustSTL        | Offline | 0.010     | 0.027           |
| Window-STL       | Online  | 0.165     | 0.066           |
| Window-SSA       | Online  | 0.444     | 0.426           |
| Window-TBATS     | Online  | 0.339     | 0.115           |
| Window-RobustSTL | Online  | 0.071     | 0.030           |
| Online-RobustSTL | Online  | 0.073     | 0.030           |
| OnlineSTL        | Online  | 0.368     | 0.303           |
| OneShotSTL       | Online  | 0.150     | 0.077           |
| BacktrackSTL     | Online  | 0.012     | 0.023           |

#### Efficiency

Latency of BacktrackSTL is independent with period length and 15x faster than OneShotSTL.



#### Conclusion

In this paper, we introduce BacktrackSTL, a novel seasonal-trend decomposition algorithm with O(1) time complexity.

BacktrackSTL decomposes a value within 1.6us, which is 15x faster than state-ofthe-art online algorithm OneShotSTL.

BacktrackSTL is robust to trend jumps, seasonality shifts, and outliers. It achieves a comparable accuracy to the best offline algorithm RobustSTL.

# THANKS FOR YOUR LISTENING

Slides and poster will be shown soon on <u>https://wanghy.pages.dev</u>

### **Complexity Analysis**

| Step                         | Time Complexity | Frequency | Amortized Complexity |  |
|------------------------------|-----------------|-----------|----------------------|--|
| Outlier-resilient smoothing  | O(KH)           | Always    | O(KH) ~ <b>O(1)</b>  |  |
| Non-local seasonal filtering | O(KH)           | Always    |                      |  |
| Jump detection               | O(1)            | Always    |                      |  |
| Backtrack                    | O(W+KHL)        | <1/W      |                      |  |

#### **Discussion on Jump Detection**

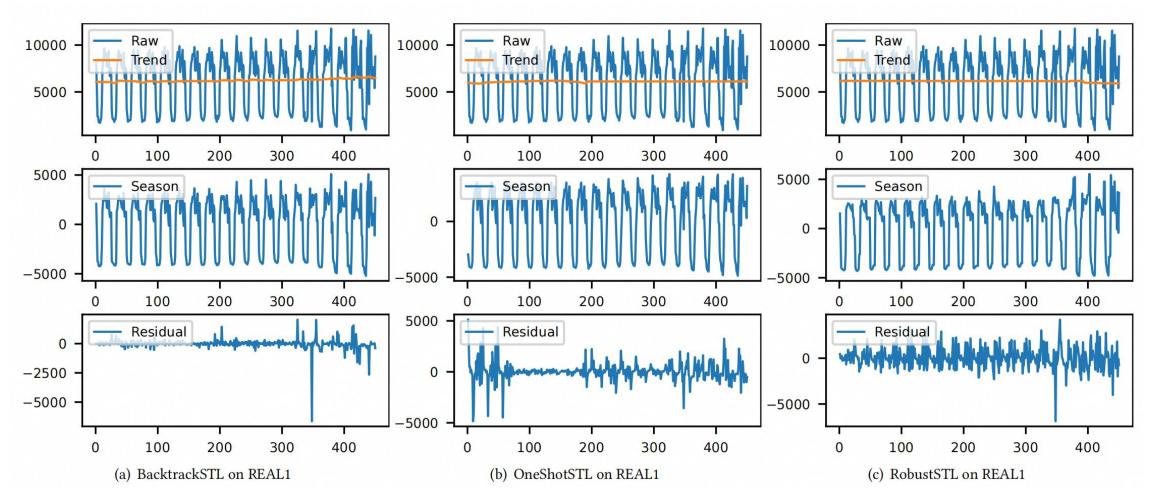
A delayed decision is naturally embedded in the online scenario.

- □ BacktrackSTL: Consecutive outlier threshold (Explicit)
- □ RobustSTL: Regularization parameter (Implicit)

$$\min_{\tau_{1...N}} \sum_{t=T+1}^{N} |(y_{t} - \tau_{t}) - (y_{t-T} - \tau_{t-T})| + \lambda_{1} \sum_{t=2}^{N} |\tau_{t} - \tau_{t-1}| + \lambda_{2} \sum_{t=3}^{N} |\tau_{t} - 2\tau_{t-1} + \tau_{t-2}| + \lambda_{1} \sum_{t=2}^{N} |\tau_{t} - 2\tau_{t-1} + \tau_{t-2}| + \lambda_{t-2} \sum_{t=2}^{N} |\tau_{t} - 2\tau_{t-1} + \tau_{t-2} + \lambda_{t-2} \sum_{t=2}^{N} |\tau_{t} - 2\tau_{t-1} + \tau_{t-2} + \lambda_{t-2} + \lambda_{t-2$$

#### Accuracy on REAL1

BacktrackSTL is as accuracy as offline RobustSTL, better than OneShotSTL.



#### Accuracy on REAL2

BacktrackSTL is as accuracy as offline RobustSTL, better than OneShotSTL.

