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Abstract—This paper presents GLAC, the first 3D localization
system that enables millimeter-level object manipulation for
robotics using only COTS RFID devices. The key insight of
GLAC is that mobility reduces ambiguity and thus improves
accuracy. Unlike state-of-the-art systems that require extra time
or hardware to boost performance, it draws the power of
modeling mobility in a delicate way. In particular, we build
a novel framework for real-time tracking using the Hidden
Markov Model (HMM). In our framework, multiple Kalman
filters are designed to take a single phase observation for updating
mobility states, and a fast inference algorithm is proposed to
efficiently process an exponentially large number of candidate
trajectories. We prototype GLAC with only UHF tags and a
commercial reader of four antennas. Comprehensive experiments
show that the median position accuracies of x/y/z dimensions are
within 1 cm for both LoS and NLoS cases. The median position
accuracy for slow-moving targets is 0.41 cm, which is 2.2×, 17.3×,
and 14.9× better than TurboTrack, Tagoram, and RF-IDraw,
respectively. Also, its median velocity accuracy is at least 20×
better than all three competitors for fast-moving targets. Besides
accuracy, it achieves more than 4× localization time gains over
state-of-the-art systems.

Index Terms—RFID, Real-time Tracking, High speed

I. INTRODUCTION

Robotics has been evolving significantly over the past

decades, becoming more capable, agile, and precise [1], [2],

[3], [4]. This robot precision is the key enabler to future ap-

plications. Different from earlier industrial automation where

many repetitive tasks, e.g., car-door painting, do not require

high precision, modern robots nowadays are integrating motion

control, actuator, and other advanced technologies to complete

a wide range of tasks [5], [6], [7], [1], from welding to surgery.

For example, recent studies show that delicate eye surgery can

be done with a robot that is ten times more precise than a

human surgeon [8].

Laser and vision-based solutions have been the mainstream

to deliver robot precision [9], [10], [11]. The most widely used

clinical robotic surgical system, da Vinci, has mechanical arms

with surgical instruments and a camera arm that provides a

high-definition, magnified, 3D view of the surgical site [12].

Such systems, however, have two main drawbacks: high cost

that prohibits small and medium enterprises adoption, e.g., an

infrared VICON motion capture system is priced at hundreds

of thousands of dollars [13]; and poor handling of occlusion

that is the fundamental weakness for visions. As a result,
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robotics has been looking for real-time localization solutions

that are cost-effective, highly accurate, and capable of dealing

with occlusion.

To address aforementioned issues, the wireless commu-

nity has made much effort in RFID localization systems,

which offer an appealing alternative as it can achieve high-

precision, auto-identification, and working with Non-Line-of-

Sight (NLoS) cases [14], [15], [16], [13], [17], [18]. Through

a careful study, we find that prior arts focus on putting in

either more money, e.g., expensive and powerful equipment,

or more time by requiring heavy computation or restrictive

mobility. For example, RFind [15] is quite resource-intensive;

it requires 4 USRPs of N210 (amounting to $ 8000), more

than 66 packets to derive a position estimate (translating to

a reading delay of seconds), and a bandwidth of 200 MHz

wide (10 times of a typical WiFi channel). Tagoram [18],

which needs only a single COTS reader, takes several seconds

computation time to localize once, making it unfit for real-time

tracking. RF-IDraw [16], which has moderate money and time

cost, achieves an unsatisfactory median position accuracy, 19

cm; thus it is only suitable for applications that only require

shape fidelity, like drawing, as opposed to precise location

control, such as robot-assisted surgery. In short, how to build

a real-time localization system for precise robot control with

COTS RFID equipment remains a big challenge.

In this paper, we present GLAC, the first 3D localization

system that enables millimeter-level object manipulation for

robotics using only COTS devices. Compared to prior arts,

it achieves the most accurate localization while consuming

minimal resources in terms of cost-effectiveness and time-

efficiency. Naturally, a question arises; as the saying goes

“you get what you pay for”, how could we achieve more by

expending less? Of course, GLAC is no free lunch. Unlike

previous systems that mainly employ more physical resources

or assumptions, we take a completely distinct approach, which

is to draw power from mobility itself. Our key insight is that

ambiguity may hurt once, but not forever. In other words,

while differentiating ambiguity at a time may be difficult due

to insufficient information, it becomes more tractable when

we build a network of candidate trajectories containing all

the possible ambiguities. Because there is only one candidate

trajectory that most closely matches the ground truth if the

object’s mobility is reasonably modeled. It is like that we

put a great number of gladiators into a fight arena, and the



final survivor is the strongest one. That’s why we call it

GLAC (GLadiator trACking). Turning this idea into a system,

however, faces two critical challenges.
1) How to reduce ambiguities with constrained COTS devices?

The basic principle of resolving ambiguities is to acquire

more information. Nevertheless, the intrinsic low reading rate

of COTS RFID devices cannot meet the demand for high-

precision. As a result, many prior systems attempt to overcome

this barrier from different perspectives. TurboTrack employs

extra localization helpers (wideband USRPs) that can achieve

reading rates of upto 300 frames/s [14]. RF-Compass [13],

PinIt [17], and MobiTagBot [19] require to collect a number of

packets on the scale of several seconds. RF-IDraw draws infor-

mation from a deliberately designed antenna placement with

8 antennas using plane geometry. On the contrary, we resort

to mobility modeling since our goal is to push the envelope of

COTS RFID localization with no strings attached. Specifically,

we build a novel framework of localization using the HMM

where spatial states at a time are discrete and those states over

time are continuous. This way, RFID localization is translated

into an HMM inference problem. As more observations come

in, the likelihood of identifying the optimal trajectory (hidden

states) increases, i.e., mobility over time reduces ambiguities.

Further, to solve the low-rate COTS reading problem, we

design Kalman filters that take a single phase for updating

as opposed to multi-phase feeding in all prior arts.
2) How to achieve real-time localization efficiency?

The localization time involves reading time and computation

time. While our HMM framework is designed to accommodate

single-phase readings, which achieves minimal communication

overhead, its computation overhead is prohibitive. Because the

number of candidate trajectories increases exponentially over

time. To address this, we employ a fast inference scheme that

includes nearest neighbor pruning and initial states pruning

techniques. Such an expedited scheme ensures that the number

of candidate trajectories does not grow over time. Given fully

optimized reading and computation time, GLAC can deliver

accurate localization with high time-efficiency.
We prototype GLAC with only UHF tags and a commercial

reader with four antennas. The main results of our extensive

experiments are summarized as follows.

• The median position accuracies of x/y/z dimensions are

within 1 cm for both LoS and NLoS cases.

• In slow-moving scenarios, the median position accuracy

is 0.41 cm, which is 2.2×, 17.3×, and 14.9× better than

TurboTrack, Tagoram, and RF-IDraw, respectively, and

those gaps enlarge to 21.8×, 21.7×, and 32.6× for fast-

moving scenarios.

• The median velocity accuracy is 2.26 cm/s for slow-

moving cases, which is 5.3×, 7.6×, and 7.2× better than

TurboTrack, Tagoram, and RF-IDraw, respectively, and

those differences grow to more than 20× for all three

competitors when the target is fast-moving.

• As to localization time-efficiency, it achieves overall time

gains of 4× over TurboTrack, 72× over Tagoram, and 4×
over RF-IDraw.

Contributions: We make the following contributions:

• GLAC is the first mobile 3D localization system that sup-

ports robot object manipulation using only COTS devices.

It enables robots to locate an object with an accuracy of

millimeter-level and a timescale of tens of milliseconds.

By doing so, it provides a practical tracking solution

for robotics, which is cost-effective, highly accurate, and

real-time even with NLoS.

• GLAC presents a novel RF-tracking framework formu-

lated using the HMM. It makes three key differences:

1) it leverages the object’s mobility for disambiguation;

2) it can estimate the object’s velocity in addition to

its location using only a single phase measurement; 3)

it employs a fast inference algorithm that uses nearest

neighbor pruning and solid geometry.

• A real-time prototype of GLAC is implemented, and

extensive real-world experiments show its capability of

millimeter-level tracking in real-time. As GLAC requires

only COTS gadgets, billions of deployed commercial tags

and readers are ready to benefit a wide range of agile

robot applications.

II. MOTIVATION

To begin with, we investigate how prior systems perform

under a standard test, which can help us gain deep insights

about what the essentials are for high-precision tracking. It

goes as follows. We employ a COTS reader with 4 antennas

to continuously localize a tag moving at 40 cm/s along

a predefined track. The systems are reproduced faithfully1,

include RF-IDraw [16], Tagoram [18], and TurboTrack [14].

Results are shown in Figure 1a. We observe that all three

state-of-the-art systems perform poorly as the resulted trajec-

tories are far from the ground truth. After diving deeper into

tracking processes, we find two main factors are contributing

to this.

Oversimplified mobility models. Even though all three sys-

tems aim for tracking, they do not draw sufficient attention to

mobility. For example, Tagoram fits the trajectory using the

estimated distance difference that is always less than λ
4 . This

strategy may lead to significant errors when the tag moves

fast. As shown in Figure 2a, the estimated distance difference

is Δde as it is less than λ
4 , which is wrong since the actual

distance difference is Δda. Similar things happen to RF-IDraw

and TurboTrack as well, as shown in Figure 2b and 2c. As

RF-IDraw tracks the grating lobe that is the closest to the last

lobe and TurboTrack looks for the intersection point that is

the closest to the particle position of the previous round, both

could result in wrong picks due to the tag’s fast movement.

In short, mobility has to be properly modeled to deal with

fast-moving objects.

Low-rate asynchronous reading. One may wonder why

TurboTrack looks so bad in our test, far from that stated in the

original paper [14]. The answer is COTS readers interrogate

1For details including settings, parameters and detailed results, please refer
to Section V.
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Figure 2: Oversimplified mobility assumptions cause tracking

failures for all three systems.

tags at a median rate of 30 frames/s [18] whereas SDR

readers of [14] work at 300 frames/s. Such a low-rate reading

further necessitates mobility modeling. In addition to that,

differing from SDR readers that can receive backscattered

signals simultaneously across multiple antennas, COTS readers

only support asynchronous reading for multiple antennas, i.e.,

one antenna at a time. Suppose that the delay of two successive

asynchronous readings is 30 ms 2, and the antenna reading

order is 1-2-3-4. Then the delay between the 1st antenna

and the 4th would translate to a position error of 3.6 cm

when the tag moves at 40 cm/s, which may lead to even

greater accumulated errors. Simply put, all three state-of-the-

art systems are not well prepared for low-rate asynchronous

readings.

III. GLAC DESIGN

We will first formally formulate the problem and present the

solution framework, then propose a fast inference that achieves

real-time efficiency.

A. HMM Tracking Framework

Almost all COTS readers can output backscatter phase

readings, which is a measure of the range between the reader

and tag expressed in units of cycles of the carrier frequency.

While this phase measurement can be made with very high-

precision, the whole number of cycles is not measurable. Given

the distance between the reader and tag, z, the measured phase,

φ, follows,

φ =
2z

λ
+ δ mod 2π, (1)

2The median value measured from ImpinJ R420 and Thingmagic M6e.
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Figure 3: HMM Framework where multiple Kalman filters are

used to estimate hidden states from phase observations.

where λ is the wave length, δ is the noise. Since phase is

periodic with a period of 2π radians, the phase values will

repeat at distances separated by integer multiples of one-

half wavelength 3, zn = φ + nλ
2 , n = 0, 1, 2...4. We can

imagine phase as a measuring tape extending from the reader

to the tag that has numbered markers every one millimeter.

Unfortunately, however, the numbering scheme returns to zero

with every one-half wavelength. To remove such ambiguities,

many previous systems make various attempts including mov-

ing antennas [17], [19], virtual antennas [18], and dedicated

localization helpers [15], [14]. Instead, we choose to model

mobility into an HMM based on a key observation; phases

are accurate and all we need to do is to reduce ambiguities.

The basic RFID localization problem is that given a time se-

ries of phase measurements (φ0,φ2,...,φκ), find the most prob-

able location series (P0, P2,...,Pκ). We translate this process

into an HMM, as shown in Figure 3. First, we model the mo-

bility status of each location as θk = (Px,k, Py,k, Vx,k, Vy,k)
T ,

where Px,k and Py,k are x-y coordinates of the location

at time k, and Vx,k and Vy,k are corresponding velocities.

Second, we extend phase observation φk to separating distance

observations (ambiguities) Zk = (z0k, ..., z
n
k ). Accordingly,

state θk is discretized into θ0k, ..., θ
n
k , each of which is related

to the corresponding distance observation. Hence, the original

problem becomes given a set of distance observations (Z0, Z1,

..., Zκ), find the most probable states (θ̂0, θ̂1, ..., θ̂κ). Simply

put,
ˆθ0:κ = argmax

θ0:κ
p(θ0:κ|Z0:κ). (2)

Apparently, there are nκ possible trajectories with nκ obser-

vation sequences. To find the optimal trajectory, the simplest

way is to compute the likelihood of the observation sequence

for each trajectory. Then we choose the trajectory with the

maximum observation likelihood among all possibilities.

To do so, we need to estimate all the hidden states and this is

where Kalman filters come in [20]. From a high level, we put

a Kalman filter for each trajectory and estimate its mobility

statuses continuously. Before state estimation, we find there

3For many readers that introduce additional π ambiguity for phase values,
separating distances become nλ

4
.

4n can be set based on the maximal reading range.



are two important parts missing, state transition probabilities

and observation likelihoods.

Transition equation. As a general time-varying system, we

approximate state transition as a Gaussian process,

θk+1 = Aθk + sk =

⎛
⎜⎜⎝

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ θk + sk (3)

where Δt is the time difference, sk is the system-state Gaus-

sian noise, A is the system matrix depicting mobility. Both θk
and sk follow Gaussian distribution, i.e., θk ∼ N (mk,Σk),
sk ∼ N (0,Qk).
Observation equation. The observed distance, zk, can be

modeled as two points in Euclidean space as follows5,

zk = (
√
(Px,k −Ax,i)2 + (Py,k −Ay,i)2) + uk. (4)

where Ax,i and Ay,i are the positions of the antenna i that

reports φk, and uk ∼ N (0,Rk) is Gaussian noise.

State estimation. When transition and observation equations

are in place, Kalman filters can be invoked iteratively to do

state estimation. Note that due to the nonlinearity of our

observation equation, the Extended Kalman Filter[21] (EKF)

is needed. Then the observation equation becomes

zk = Cθk + uk,

where Ck = ( ∂zk

∂Px,k
, ∂zk

∂Py,k
, ∂zk

∂Vx,k
, ∂zk

∂Vy,k
), is the observation

matrix. Then the Kalman filter is able to predict the state at

time k + 1 using the transition equation,

θ′k+1 =Aθk (5)

Σ′
k+1 =AΣkA

T +Q (6)

Afterwards, an update has to be done by combing observation

equation and predicted θ′k+1 as

θk+1 =θ′k+1 +Kk+1(zk+1 −Ck+1θ
′
k+1) (7)

Σk+1 =(I−Kk+1Ck+1)Σ
′
k+1, (8)

where Kk+1 = Σ′
k+1C

T
k+1(Ck+1Σ

′
kC

T
k+1+Rk+1)

−1 is the

Kalman gain that balances transitions and observations.

The above four equations are for one round. Iterative

executions for a candidate trajectory from the beginning to

the end and then for all the candidate trajectories make all the

hidden states properly estimated. There are several distinct

features of our HMM framework with multiple Kalman filters

worth mentioning.

• As velocities are estimated together with each position,

position estimates that do not match velocity history will

be devalued significantly by the Kalman gain, reducing

ambiguities.

• To estimate the next state, we only need a single phase

measurement, which accommodates the asynchronous

reading mode and differs from all previous approaches

[14], [15], [16], [13], [17], [18].

5We describe it in 2D for simplicity.
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Figure 4: The schematic diagram of (a) position estimation:

The centroid of the triangle is the estimated position. (b)

velocity estimation: The projection of velocity can be used

to estimate the original velocity.

• The Gaussian mixture model used by previous systems

[14], [18] is no longer needed as we already discretized

it into multiple separate Gaussian models for Zk.

B. Fast Inference Using Nearest Neighbor

While the aforementioned HMM framework seems settled,

it has a big drawback, high complexity. Specifically, as more

phase readings come in, the candidate trajectories increase

exponentially, which conflicts the goal of real-time tracking.

As the reading time is already minimized by using only

single-phase updates, we design two techniques to achieve

computation efficiency, nearest neighbor pruning and initial

state pruning.

1) Nearest Neighbor Pruning: The basic idea of nearest

neighbor pruning is to reduce the number of candidate trajec-

tories by only connecting the nearest distance observation. It

works as follows. Suppose the state at time k of one candidate

trajectory is θik, then at time k + 1, this state is only transit

to state θ∗k+1 whose observation distance z∗k+1 is the nearest

to the predicted state θ′k+1. In particular, the pick of z∗k+1

follows

zk+1 =
φk+1

2π
λ+

λ

2
argmin

i∈Z
|φk+1 + iπ

2π
λ− dk+1|, (9)

where dk+1 is the distance between (P ′
x,k+1, P

′
y,k+1) and

antenna i that reports phase at time k + 1.

Apparently, our nearest neighbor pruning is a greedy algo-

rithm, which may achieve local optimum. But such a sacrifice

is worth it because it ensures that the number of candidate

trajectories is not growing over time, achieving great time

efficiency. While one may think our nearest neighbor strategy

is similar to the pitfalls of previous systems shown in Section

2, it has at least two major differences. First, it does not

pose any limit on location and velocity estimation, which is

different from that prior systems explicitly or implicitly set

mobility constraints through location estimates. Second, even

if sometimes the nearest neighbor strategy chooses the wrong

candidate, it could be offset somehow by our observation and

system mobility matrices through Kalman gains, whereas prior

systems do not have such correction.
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Figure 5: GLAC working process. We show the trajectories with the top 10 likelihoods in 2D tracking. The trajectories with

low likelihoods quickly stop as in (b) and (c). As time goes by, the optimal trajectory wins as it is the most likely one that

fits the mobility model.

2) Initial State Pruning: As the nearest neighbor strategy

guarantees the number of candidate trajectories is the same as

the number of initial states, we look to how to estimate and

further reduce this number.

Initial position estimation. To estimate initial positions, we

can use trilateration that estimates intersections of circles from

multiple antennas. But we can only get a phase reading at

a time, which brings multiple concentric circles that would

not intersect. To solve this, we employ phase interpolation.

Suppose during a short time period (ta, tb), we obtain at

least two phase readings for each antenna. Then for antenna

j, we interpolate raw phases to obtain initial phases as
ˆ
φj
0

at a common reference time, tx (ta < tix < tb). This way,

different antennas’
ˆ
φj
0 are synchronized at tx. Note that raw

phases need to be unwrapped before interpolation.

We then translate each interpolated phase to multiple dis-

tance candidates similar to zn, which makes a number of

circles for trilateration. In theory, every three circles make an

intersection estimation, as shown in Figure 4a. These circles

will intersect at a maximum of 6 points. We choose the

closest three points and make their centroid as the estimated

position. To reduce the number of estimated positions, we

assume that the correct triangle should not have a too large

perimeter. Therefore, we set a threshold Dth, and the centroid

will be removed from the candidate set if the perimeter of

the associated triangle is greater than the threshold. Note that

while using the perimeter threshold is inspired by TurboTrack

[14], our novelty lies in how to synchronize asynchronous

phase readings and estimate accurate initial positions, which

helps fast convergence for Kalman filters.

Initial velocity estimation. Initial velocity has to be estimated

as well. The key idea of velocity estimation is recovering

the original velocity from projected velocity, as shown in

Figure 4b. First, for every antenna, we calculate the projected

velocity, which is in the direction of the line connecting the

antenna and the tag. We then unwrap the phases and transform

the phase difference Δφi of antenna i between two successive

readings to the projected velocity |Vi| = Δφi

4π
λ
Δt , where Δt

is the time interval between these two readings. At the same

time, the projection velocity can be derived from the original

velocity as, |Vi| = |V| cos � i, where � i is the angle between

the original velocity and the projection velocity Vi. Yet, this

relationship is non-linear and thus requires transformation. Let

Vi’s unit vector ei = (ei,x, ei,y) and V = (vx, vy). We can

obtain |Vi| = ei · V = ei,xvx + ei,yvy. Now, there are only

two unknown variables vx and vy , which means as long as we

can get some more interpolated phases, applying linear least

square is sufficient to make accurate velocity estimates.

3) Optimal Trajectory: Finally, we show how to fast com-

pute the likelihood of pruned trajectories by iteratively prop-

agating beliefs.

Likelihood at initial time. Assume we have interpolated

phases ˆφi,0, 1 ≤ i ≤ M . The likelihood at initial time is

L0 =

M∏
i=1

P (θ0| ˆφi,0) ∝
M∏
i=1

P ( ˆφi,0|θ0) =
M∏
i=1

F(di0; z
∗
0 , R0),

(10)

where di0 is the distance between antenna i and initial po-

sition (Px,0, Py,0), z∗0 is the candidate distance closest to

(Px,0, Py,0), and F(x;μ,R) is a Gaussian probability density

function with a mean of μ and a variance of R. If we assign

weights equally across all interpolated phases, L0 can be

approximated as
∏M

i=1 F(di0; z
∗
0 , R0) because we normalize

all the likelihoods of trajectories at every time snapshot.

Likelihood update at time k + 1. Following a trajectory, if

we have the trajectory’s likelihood at time k, its likelihood

the time k+1 can be derived from the transition and observe

equations as

lk+1 = lkp(z
∗
k+1|θk+1)p(θk+1|θk), (11)

p(z∗k+1|θk+1) = F(dk+1; z
∗
k+1,Rk+1), (12)

p(θk+1|θk) = F(θk+1; θk,Qk+1), (13)

where F is a multidimensional Gaussian probability density

function. Similarly, all the likelihood of trajectories are nor-

malized for time k + 1.

C. Putting It All Together

We summarize the major steps of GLAC as follows:

1) Initially, we interpolate phases and use initial state prun-

ing to obtain a handful of quality initial positions and

velocities.
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Figure 6: CDFs of GLAC’s position errors in x/y/z dimensions for LoS and NLoS scenarios.

2) For each candidate trajectory during an update, we use

nearest neighbor pruning to select the next distance ob-

servation and employ an EKF to estimate hidden mobility

states and the likelihood of the trajectory.

3) We normalize likelihoods among trajectories at every time

snapshot and the trajectory of the highest likelihood is

chosen as the optimal one.

Figure 5 shows how the optimal trajectory gains likelihood

through mobility over time. A few additional points are worth

noting:

• Quick stop. We observe that after several iterations, most

of the likelihoods are concentrated on a few trajectories,

while the likelihoods of others are close to zero. Because

it is almost impossible for the trajectory with a super-low

likelihood to be the final winner, we set a threshold lth
for quick stop. The trajectories that have likelihoods less

than lth will be removed and stop updating.

• Recovery. Due to various interferences, e.g., severe fre-

quency selective shading, phase readings may have abrupt

offsets. To address this, we set a threshold 3σv to discrim-

inate such outliers. In particular, when the velocity change

between two adjacent states is above 3σv , we will replace

this abnormal observation using the predicted state.

IV. IMPLEMENTATION

Equipment. We build a prototype using a Thingmagic M6e

reader [22] with 4 omnidirectional antennas, which are placed

on a plane at (0,0), (0,30), (0,80) and (80,80)6. Target objects

are attached with multiple kinds of tags, including Alien 9640

[23], ImpinJ Monza 4D [24], and SMARTRAC DogBone

[25]. For 2D-tracking, we use a C1-intelligent car, which is

remotely controlled through wireless, whereas for 3D-tracking,

a VANBOT 4DoF robotic arm [26] are tested, as shown in

Figure 9.

The localization software is programmed using Java and

Mercury APIs [27], which collect phase readings from the

reader to a laptop. Two threads are involved; one for GUI

and the other for trajectory updates when a new phase reading

comes in. The whole system works in real-time.

6This is not mandatory as our solution supports arbitrary placements and
the implicit coordinate system is in centimeters.

Experimental Environment. To obtain ground truth, we use

an OptiTrack system [28], which costs $200,000. It is a vision-

based camera-array system that can capture 3D-motions with

0.1 mm accuracy. It also has 360 fps and 2.8 ms latency, which

qualifies for position ground truth. The experiments are con-

ducted in various indoor environments, including classrooms

with tables and chairs, library with benches and bookshelves,

and lab environments full of work-counters and computers.

Both LoS and NLoS tests are performed. Similar to past works

[16], [14], the NLoS scenarios are built with putting separators

to block the LoS between the antenna and the RFID tag, and

since OptiTrack can only work in LoS, we let the tracking

marker remain in LoS for cameras while keeping the tag in

NLoS for antennas.

Competition. State-of-the-art competitors includes:

• TurboTrack [14] represents an high-precision tracking

system achieving sub-centimeter accuracy for 3D. For

fair-comparison purposes, TurboTrack here is reproduced

with COTS devices, instead of SDRs. Also, one-shot

wideband estimation is not implemented as it is not

compatible with COTS readers. All the rest modules are

faithfully reproduced.

• RF-IDraw [16] is a representative of accurate shape-

tracking system. But the original proposal requires 8

antennas and 2 readers, which is far more than other com-

petitors. So for fair competition, we adopt a 4-antenna

version [29] that keeps all of the essential components

and only differs in antenna placement.

• Tagoram [18] stands for decimeter-level tracking using

COTS RFIDs. It can track only in 2D as its computation

overhead is overwhelming for 3D. Our implementation

set the resolution to 1000× 1000. Note that the known-

track version in the original paper is not suitable for

robotic tracking and thus not implemented.

V. EVALUATION

A. Performance

1) 3D Accuracy: We evaluate GLAC’s 3D tracking accu-

racy in both LoS and NLoS scenarios. More than 50 exper-

imental trials are conducted, which amounts to over 10,000

phase readings. For each trial, we program the robotic arm to
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Figure 7: Position and velocity errors of slow-moving (10 cm/s) and fast-moving (40 cm/s) motions for GLAC, TurboTrack,

Tagoram, and RF-IDraw. Error bars indicate the 10th and 90th percentiles.

move the target object along both regular and arbitrary tracks.

The position error is calculated as the Euclid distance between

the estimated location and the ground truth.

Figure 6 shows CDFs of position errors for both LoS and

NLoS cases. We observe that the median accuracies of all

x/y/z dimensions are within one centimeter for all scenarios. In

particular, the median accuracies of x/y/z dimensions are 0.35

cm, 0.35 cm and 0.52 cm in LoS settings, while counterparts

are 0.57 cm, 0.40 cm and 0.73 cm in NLoS settings, which

degrade slightly due to lower SNRs. Moreover, the 90th per-

centiles are within 2cm in both scenarios for each dimension.

Those results fully manifest GLAC’s ability for high-precision

tracking. This is mainly attributed to our HMM framework that

removes ambiguities, which lets the optimal trajectory stand

out by gaining more and more likelihoods through mobility.

2) Mobility Comparison: Next, we intend to investigate

how GLAC and prior arts perform in different mobilities.

The intelligent car is programmed to move along the track at

various velocities from 10 cm/s to 50 cm/s. Our experimental

trials are conducted in 2D for fair comparison, as RF-IDraw

and Tagoram only support 2D-tracking.

Figure 7a shows detailed comparisons of position errors

under two representative settings: 10 cm/s for slow movement,

and 40 cm/s for fast movement. The results show that GLAC

is significantly better than all three state-of-the-art systems in

both cases. Specifically, at a velocity of 10cm/s, the median

position accuracies of GLAC, TurboTrack, Tagoram and RF-

IDraw are 0.41 cm, 0.90 cm, 7.09cm and 6.09 cm, respec-

tively. When the velocity increases to 40cm/s, GLAC’s median

position accuracy degrades slightly to 0.95 cm. In contrast,

those of TurboTrack, Tagoram and RF-IDraw surge to 20.7

cm, 20.6 cm and 31.0 cm, respectively. In other words, in the

slow-moving case, GLAC’s median position accuracy is 2.2×,

17.3×, and 14.9× better than TurboTrack, Tagoram, and RF-

IDraw, and when it comes to the fast-moving case, those gaps

enlarge to 21.8×, 21.7×, and 32.6×.

Besides absolute position, another important metric of mo-

bility is velocity. We compare GLAC’s velocity error against

three competitors, as shown in Figure 7b. While three com-

petitors do not provide explicit velocity computation, we

approximate that as the quotient of the position and time

differences between two successive states. Again, the velocity

estimation results demonstrate that GLAC is consistently better

than prior arts for both dynamic scenarios. In particular,

for the slow-moving case, the median velocity accuracy of

GLAC is 2.26 cm/s, which is 5.3×, 7.6×, and 7.2× better

than TurboTrack, Tagoram, and RF-IDraw, respectively; with

the velocity increased to 40 cm/s, the gaps grow to 23.1×,

21×, and 21.4×. Note that although TurboTrack achieves sub-

centimeter median position accuracy in the slow-moving case,

the corresponding velocity error is as large as 12 cm/s, which is

far from 2.26 cm/s, the counterpart of GLAC. This reaffirms

that accurate position estimates alone do not guarantee the

quality of velocity estimates. Two main factors are contributing

to the above performance gaps.

• Prior arts do not take care of asynchronous phase read-

ings. When fast-moving tags meet low-rate phase read-

ings, the position errors inevitably surge like a rocket.

In contrast to that, GLAC novelly synchronizes phases

from different antennas for initial state estimation and

customizes Kalman filters that can take a single phase

for each update.

• In addition, those state-of-the-art systems barely pay

attention to mobility models and thus can only derive

velocity from position estimates that already contain non-

negligible errors. As a result, when the tag moves at

a high velocity, position errors inevitable cascade over

velocity estimates and future position states. Instead,

GLAC models the velocity and position together as the

mobility status and update it in an accurate way.

3) Time-Efficiency Comparison: Other than high precision,

real-time is one of our design goals. We evaluate the time

efficiency of GLAC together with prior systems. We decouple

the total time of deriving one position estimate into commu-

nication time for reading phases and computation time for

localization.
Table I shows the average time cost of over 100 experiment

trials. The results clearly show that GLAC is the most time-

efficient system. We break these gains down and find that

communication is the dominating factor, except for Tagoram.

In particular, GLAC is the winner for communication overhead

as it only requires a single phase to predict the next location,



Table I: Localization time comparison.

Reading Computation Total

GLAC 28ms 78us 28ms
TurboTrack 111ms/4.0× 408us/5.2× 111ms/4.0×

Tagoram 111ms/4.0× 1896ms/24300× 2007ms/72×
RF-IDraw 111ms/4.0× 3us/0.038× 111ms/4.0×

whereas the other three systems need at least 4 packets 7. As

to computation overhead, GLAC is 5.2× and 24300× better

than TurboTrack and Tagoram. This is because TurboTrack

uses Particle Filter, which requires a large number of particles

to represent the Gaussian distribution, while GLAC employs

EKFs that efficiently uses a covariance matrix for Gaussian.

Tagoram’s huge delay stems from its inefficient exhaustive

search. Note that RF-IDraw is the best computation-efficient

system, but after counting communication time in, it is not

the winner for the overall time cost. In short, GLAC achieves

the best overall time-efficiency among all thanks to shortest

reading time brought by single-phase update and decent com-

putation time resulted from our fast inference scheme.

B. Micro Benchmarks

1) Initial Position Accuracy: First, we examine the accu-

racy of initial position estimation, which returns a number of

estimated initial states, rather than a single one. As the HMM

framework is able to remove ambiguities, here we always

choose the initial position nearest to the ground truth as the

representative and report initial position errors as the distance

between this representative and ground truth. This way, the

impact of other components is totally removed. As shown in

Figure 8a, our initial position estimates are very accurate as

the median error is only 0.97 cm and the 90th percentile is

1.92 cm. The main reason for this successful estimation is

that we make synchronized phases across antennas through

interpolating unwrapped phases.

In addition to that, we conduct experiments to quantify the

impact of those initial estimation errors on the trajectory track-

ing. We randomly inject initial position errors ranging from

0-6 cm based on the ground truth, and estimate corresponding

velocities. Then EKFs are used to reconstruct trajectories.

The results are shown in Figure 8b. We observe as long as

the initial error is less than 4 cm, GLAC can achieve sub-

centimeter tracking accuracy. Recall that the 90th percentile

of GLAC’s initial position error is only 1.92 cm. As a result,

our initial position estimates are sufficiently accurate to deliver

millimeter-level trajectory accuracy.

Another observation from Figure 8b is that when the initial

error is within 4 cm, the median position error remains stable.

This is because EKFs converge to the true trajectory after a

few iterations, i.e., only a handful of positions may be affected,

which do not make too much difference for median errors

statistically. One may think that, due to phase ambiguities,

7Other work [30] has reported faster reading rates through a set of rate
adaption techniques, which we plan to investigate in the future for further
performance optimization.
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Figure 8: Initial position estimation. (a) plots the CDF of the

distance between the nearest initial estimate and the ground

truth. (b) shows the impact of initial errors on the trajectory’s

median position error. Error bars indicate the 10th and 90th

percentiles.

an EKF could converge to another trajectory when the initial

error is large. Nevertheless, GLAC starts a series of EKFs

and employs likelihood evaluation to choose the optimal one,

which hardly go wrong with the help of mobility modeling.

2) Gains of Fast Inference: In addition, we intend to eval-

uate the computation-efficiency brought by our fast inference

design. We compare two schemes, GLAC with fast inference

and that with naive inference. So, we run two schemes at the

same time with the same data, and then check how well they

perform at the same time snapshots.

Results are listed in Table II. We observe that fast inference

is significantly better than naive inference in terms of time-

efficiency and accuracy. This is mainly due to that fast

inference guarantees the number of trajectories (no. of EKFs)

does not increase with time. In consequence, it can go further

for iteration depth, which means mobility effectively reduces

ambiguities. In particular, with 500 ms, fast inference is left

with a trajectory of depth 7,8000 (clearly the optimal one),

whereas naive inference’s iteration depth is only 3, which

makes tons of EKFs (98,000) inefficient. Even with 10s, a

large number of EKFs with shallow depths only make a

median accuracy of 24.1 cm. Hence, deep iteration depth

brought by fast inference is the key to real-time high-precision.

Another observation is with the help of quick stop and

fast inference, the optimal trajectory converges even faster.

Recall that without fast inference, the number of candidate

trajectories increases exponentially as there are n candidate

distance observations with a single phase. And each candidate

trajectory requires an EKF for updating. Specifically, the

number of trajectories for naive inference is O(nκ), where

κ the number of time snapshots, and that of fast inference

is O(n). After combined with quick stop, the number of

trajectories for fast inference at 500 ms plummets to only 1,

which is 400× lower than the number of trajectories at 10 ms.

C. Precise Manipulation Showcase

Finally, we show the qualitative performance of GLAC’s

precise 3D manipulation in Figure 9. During rotating and lift-

ing operations by the robotic arm, GLAC is able to track 3D-
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Figure 9: Robotic arm tracking: (a) shows the robotic arm carrying an item attached with an RFID tag and an OptiTrack

Marker. (b) and (c) show the trajectories of GLAC and the ground truth for rotating and lifting operations.

Table II: Time and accuracy for fast inference and naive

inference.

Time
Fast inference/naive inference

Position
error (cm)

Velocity
error (cm/s)

# of EKFs Iteration
depth

10ms 41.1/41.1 4.21/4.21 413/413 1/1
15ms 25.0/41.1 3.90/4.21 145/413 8/1
20ms 0.37/32.4 1.52/4.16 52/6036 38/2
500ms 0.36/27.5 1.49/3.88 1/9.8E4 7.8E4/3

10s 0.37/24.1 1.47/3.74 1/1.4E6 4.2E6/4

movements at sub-centimeter accuracy, demonstrating GLAC’s

great potential to enable a range of high-precision robotic

applications, such as furniture assembly through multi-robot

cooperation, and even robot-assist precise surgeries.

VI. RELATED WORK

RF-Localization. There has been much work on RF localiza-

tion using COTS and SDR devices, including LTE [31], [32],

Bluetooth [33], [34], RFID [14], [16], [18], [35] and WiFi

[36], [37], [38], [39], [40]. Among these, RFID-localization

can be broadly classified into two categories: fingerprint and

trigonometry. The fingerprint-based methods are built based on

the assumption that each distinct location has its own unique

RF-signature [41], [17], while the trigonometry-based methods

are generally more accurate as both triangulation [42], [43]

and trilateration [14], [15] are derived from fine-grained phase

measurements.

While GLAC falls into the trigonometry category and shares

similarity with prior arts from a high level, the crucial differ-

ence is that we aim to realize real-time 3D localization using

only COTS RFID devices. Bearing this in mind, we novelly

model mobility using the HMM and employ it to reduce

ambiguities without any other extra hardware or assumptions.

This is distinct new thinking and hope it will fuel more

community interests along this line.

Linear Gaussian Models. It is known that factor analysis

[44], mixtures of Gaussian clusters [45], Kalman filter [46],

and HMM [47] can be generalized to linear Gaussian modeling

[48], [49], which has extensive applications, such as inertial

navigation, speech recognition, and stock market forecasting.

Based on existing fruitful literature of linear Gaussian models,

our work is custom-built. In particular, as the standard type of

HMM usually considers discrete states, we carefully examine

our problem and build our own HMM where ambiguous states

at a time are discrete and do not transit, whereas temporal

states are continuous and estimated through Kalman filters.

We also design a fast inference scheme to choose the optimal

trajectory in real-time.

Mobility Model. Mobility is an important metric and has

been widely used in wireless networks from many aspects,

including network capacity [50], [51], [52], rate adaption [30],

[53], [54], [55], throughput control [56], and wireless sensing

[57]. Nevertheless, those works are mainly focused on coarse-

grained mobility. For example, Blink [30] only detects the tag

is moving or not. Tagwatch [56] requires a couple of seconds

to derive mobility states. On the contrary, this work models

and derives fine-grained mobility, which is complementary to

the above works and thus can be integrated to improve wireless

networks, e.g., better network coverage for mobile nodes and

higher throughput by being aware of mobility.

VII. CONCLUSION

Overall, we believe that GLAC marks an important step

towards precise robot control using COTS RFID systems. With

the novel HMM framework and fast inference technology,

it pushes the envelope of real-time RFID localization and

tracking to the millimeter-level accuracy without requiring

any extra hardware and restrictive mobility for tags and

readers. By doing so, it paves the way for fast and wide

adoption of cheap and readily available commercial RFIDs in

robotic applications demanding high-precision, e.g., welding,

assembly, and surgeries.
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