Mobility Improves Accuracy: Precise Robot Manipulation with COTS RFID Systems

Haoyu Wang[†], Si Chen[‡], and Wei Gong^{†*} [†]University of Science and Technology of China [‡]Simon Fraser University

 \checkmark

Background

Robotics has been evolving significantly over the past decades, becoming more capable, agile, and precise. This robot precision is the key enabler to future applications and **RFID localization** is an appealing solution.

Motivation

Standard Test: We employ a COTS
reader with 4 antennas to
continuously localize a tag moving at
40 cm/s along a predefined track.

Oversimplified mobility models

Low-rate asynchronous reading

Motivation: Oversimplified Model

Mobility has to be properly modeled to deal with fast-moving objects.

Motivation: Asynchronous Reading

Low-rate asynchronous readings shouldn't be approximated as synchronous.

Contribution

- We design GLAC, the first mobile 3D localization system that supports robot object manipulation using only COTS devices. It enables robots to locate an object with an accuracy of millimeter-level and a timescale of tens of milliseconds.
- GLAC presents a novel RF-tracking framework formulated using the HMM.
 - It leverages the object's **mobility** for disambiguation;
 - It can estimate the object's velocity in addition to its location using only a single phase measurement;
 - It employs a **fast inference algorithm** that uses nearest neighbor pruning and solid geometry.
- A real-time **prototype** of GLAC is implemented, and extensive real-world **experiments** show its capability of millimeter-level tracking in real-time.

Hidden Markov Model (HMM)

Problem definition: given a time series of phase measurements $(\phi_0, \phi_1, ..., \phi_k)$, find the most probable location series $(P_0, P_1, ..., P_k)$. •)) Given a distance observation series $(Z_0, Z_1, ..., Z_k)$, find the most probable state series $(\theta_0, \theta_1, ..., \theta_k)$. ϕ_k ϕ_{k+1} $\phi = 2\pi \times \frac{2z}{1} + \delta \mod 2\pi$ $\phi_k \Longrightarrow Z_k = (z_k^0, z_k^1, ..., z_k^n)$ $\boldsymbol{\theta}_{k} = (\boldsymbol{P}_{x,k}, \boldsymbol{P}_{y,k}, \boldsymbol{V}_{x,k}, \boldsymbol{V}_{y,k})^{T}$

Hidden Markov Model (HMM)

$$\phi_k \Longrightarrow Z_k = (z_k^0, z_k^1, ..., z_k^n)$$

Extended Kalman Filter (EKF)

State Definition

$$\theta_{k} = \begin{pmatrix} P_{x,k} \\ P_{y,k} \\ V_{x,k} \\ V_{y,k} \end{pmatrix}$$
• Position
• Velocity
• Velocity

in X axis in Y axis in X axis in Y axis

Transition Equation

$$\theta_k = f(\theta_{k-1}) + s_k = \begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \theta_{k-1} + s_k$$

Observation Equation

$$z_k = h(\theta_k) + v_k = (\sqrt{(P_{x,k} - A_x)^2 + (P_{y,k} - A_y)^2}) + v_k$$

We keep a Kalman filter for each trajectory to handle the Gaussian errors. Only a single phase measurement is needed to estimate the next state. Due to the nonlinearity, EKF is used.

$$\theta'_{k} = f(\theta_{k-1})$$

$$\Sigma'_{k} = A\Sigma_{k-1}A^{T} + Q$$

$$K'_{k} = \Sigma'_{k}C^{T}(C\Sigma'_{k}C^{T} + R)^{-1}$$

$$\theta_{k} = \theta'_{k} + K'_{k}(z_{k} - h(\theta'_{k}))$$

$$\Sigma_{k} = (I - K'_{k}C)\Sigma'_{k}$$

Nearest Neighbors Pruning

Nearest neighbors pruning ensures that the number of candidate trajectories is **not growing over time**, achieving great time efficiency.

Initial State Pruning

(a) Position estimation

- Interpolation
- Trilateration
- Perimeter pruning

- Projected velocity estimation
- Least squares method

Initial likelihood:

$$L_0 = \prod_{i=1}^M P(\theta_0 | \hat{\phi_{i,0}}) \propto \prod_{i=1}^M P(\hat{\phi_{i,0}} | \theta_0) = \prod_{i=1}^M \mathcal{F}(d_0^i; z_0^*, R_0)$$
Combining observations from multiple antennas

$$\begin{split} L_{k+1} = & L_k P(z_{k+1}^* | \theta_{k+1}) P(\theta_{k+1} | \theta_k) \\ P(z_{k+1}^* | \theta_{k+1}) = & \mathcal{F}(d_{k+1}; z_{k+1}^*, R_{k+1}) \\ P(\theta_{k+1} | \theta_k) = & \mathcal{F}(\theta_{k+1}; \theta_k, Q_{k+1}) \end{split} \qquad \text{Based on observation} \\ \text{Based on transition} \end{split}$$

Working Process

Quick Stop: The trajectory whose likelihood is below the threshold L_{th} will be deleted and not updated anymore.

Implementation

- Hardware:
 - ThingMagic M6e RFID reader
 - 4 omnidirectional antennas
 - RFID tags
- Groundtruth: OptiTrack

Robotic Arm Tracking

3D Tracking

The median position error of GLAC is less than 1 cm in both LoS and NLos in all dimensions achieving **millimeter accuracy**.

Mobility Comparison

GLAC achieves better performance than existing systems. Especially in **highspeed** scenarios, the performance gap is more than **20 times**.

Time-Efficiency Comparison

	Reading	Computation	Total
GLAC	28ms	78us	28ms
TurboTrack	$111 \text{ms}/4.0 \times$	$408us/5.2\times$	$111 \text{ms}/4.0 \times$
Tagoram	$111 \text{ms}/4.0 \times$	$1896ms/24300 \times$	$2007 \text{ms}/72 \times$
RF-IDraw	111 ms/ $4.0 \times$	3us/0.038×	111ms/ 4.0 ×

GLAC achieves the **best overall time-efficiency** among all thanks to shortest reading time brought by **single-phase update** and decent computation time resulted from our **fast inference scheme**.

Conclusion

- We discover that oversimplified mobility model and low-rate asynchronous reading are harmful to tracking precision, especially for fast-moving objects.
- With the novel **HMM framework** and **fast inference technology**, GLAC achieves **millimeter-level accuracy** without requiring any extra hardware and restrictive mobility for tags and readers.
- GLAC paves the way for fast and wide adoption of cheap and readily available commercial RFIDs in robotic applications demanding high-precision, e.g., welding, assembly, and surgeries.

Artifact

• Artifact Certified

• Result Certified

		■ GLAC - □ X
Online Tracking Offline Tracking Simulation Batch Processing Config Setting	Online Tracking Offline Tracking Simulation Batch Processing Config Setting	Online Tracking Offline Tracking Simulation Batch Processing Config Setting
Offline Tracking	Simulation	Online Tracking
Tag Data D:\TagData\00.csv Select Track	Line Angle(deg) 0 Velocity(cm/s) 10 Time(ms) 3000	Port EPC
90	• Circle Radius(cm) 10 Velocity(deg/s) 10 Time(ms) 1000 Simulate Switch	Create & Connect
	CDF of Velocity Error	Start Reading 90 100

Acceleration Upper Bound

- We suppose
 - wavelength λ = 0.3 m
 - reading cost t = 0.03 s
- Therefore, as long as the acceleration is not too large, the **nearest neighbor purning** works.

$$\begin{aligned} \frac{1}{2}at^2 &< \frac{1}{2}\times\frac{1}{2}\times\lambda\\ a &< \frac{\lambda}{2t^2} = 166.7m/s^2 \end{aligned}$$

Gains of Mobility Modeling

State Definition

 θ_k

$$= \begin{pmatrix} P_{x,k} \\ P_{y,k} \\ V_{x,k} \\ V_{y,k} \end{pmatrix} \cdot \begin{array}{c} \text{Position in X axis} \\ \text{Position in Y axis} \\ \text{Velocity in X axis} \\ \text{Velocity in Y axis} \end{array}$$

Transition Equation

$$\theta_k = f(\theta_{k-1}) + s_k = \begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \theta_{k-1} + s_k$$

Observation Equation

$$z_k = h(\theta_k) + v_k = (\sqrt{(P_{x,k} - A_x)^2 + (P_{y,k} - A_y)^2}) + v_k$$

