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GLAC: High-Precision Tracking of Mobile
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Abstract— This paper presents GLAC, the first 3D localization
system that enables millimeter-level object manipulation for
robotics using only COTS RFID devices. The key insight of
GLAC is that mobility reduces ambiguity (One-to-many mapping
relationship between phase and distance) and thus improves
accuracy. Unlike state-of-the-art systems that require extra time
or hardware to boost performance, it draws the power of
modeling mobility in a delicate way. In particular, we build
a novel framework for real-time tracking using the Hidden
Markov Model (HMM). In our framework, multiple Kalman
filters are designed to take a single phase observation for updating
mobility states, and a fast inference algorithm is proposed to
efficiently process an exponentially large number of candidate
trajectories. We prototype GLAC with only UHF tags and a
commercial reader of four antennas. Comprehensive experiments
show that the median position accuracies of x/y/z dimensions are
within 1 cm for both LoS and NLoS cases. The median position
accuracy for slow-moving targets is 0.41 cm, which is 2.2×,
17.3×, and 14.9× better than TurboTrack, Tagoram, and RF-
IDraw, respectively. Also, its median velocity accuracy is at least
20× better than all three competitors for fast-moving targets.
Besides accuracy, it achieves more than 4× localization time
gains over state-of-the-art systems.

Index Terms— RFID, real-time tracking, high speed.

I. INTRODUCTION

ROBOTICS has been evolving significantly over the past
decades, becoming more capable, agile, and precise [1],

[2], [3], [4]. This robot precision is the key enabler to
future applications. Different from earlier industrial automa-
tion where many repetitive tasks, e.g., car-door painting, do not
require high precision, modern robots nowadays are integrating
motion control, actuator, and other advanced technologies to
complete a wide range of tasks [1], [5], [6], [7], from welding
to surgery. For example, recent studies show that delicate eye
surgery can be done with a robot that is ten times more precise
than a human surgeon [8].

There is a lot of interest in robotics academia and industry
in the hope that robots can perform more flexible and complex
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tasks, such as assembling products like a decorator [9], provid-
ing intelligent pickup and delivery services in the kitchen [10]
or somewhere else, and multiple robots working together. For
instance, we hope to enable robots to automatically assemble
parts of finished devices, so that robots can competently
perform in-home assembly operations in retail stores.

Laser and vision-based solutions have been the mainstream
to deliver robot precision [11], [12], [13]. The most widely
used clinical robotic surgical system, da Vinci, has mechanical
arms with surgical instruments and a camera arm that provides
a high-definition, magnified, 3D view of the surgical site [14].
Such systems, however, have two main drawbacks: high
cost that prohibits small and medium enterprises adoption,
e.g., an infrared VICON motion capture system is priced at
hundreds of thousands of dollars [15]; and poor handling of
occlusion that is the fundamental weakness for visions. As a
result, robotics has been looking for real-time localization
solutions that are cost-effective, highly accurate, and capable
of dealing with occlusion.

To address aforementioned issues, the wireless commu-
nity has made much effort in RFID localization systems,
which offer an appealing alternative as it can achieve
high-precision, auto-identification, and working with Non-
Line-of-Sight (NLoS) cases [15], [16], [17], [18], [19], [20].
Table I lists the key features of most state-of-the-art systems.
Through a careful study, we find that prior arts focus on putting
in either more money, e.g., expensive and powerful equipment,
or more time by requiring heavy computation or restrictive
mobility. For example, RFind [17] is quite resource-intensive;
it requires four N210 USRPs (amounting to $ 8000), more
than 66 packets to derive a position estimate (translating to
a reading delay of seconds), and a bandwidth of 200 MHz
wide (10 times of a typical WiFi channel). Tagoram [20],
which needs only a single COTS reader, takes several seconds
computation time to localize once, making it unfit for real-
time tracking. RF-IDraw [18], which has moderate money and
time cost, achieves an unsatisfactory median position accuracy,
19 cm; thus it is only suitable for applications that only require
shape fidelity, like drawing, as opposed to precise location
control, such as robot-assisted surgery. In short, how to build
a real-time localization system for precise robot control with
COTS RFID equipment remains a big challenge.

In this paper, we present GLAC, the first 3D localiza-
tion system that enables millimeter-level object manipulation
for robotics using only COTS devices. Compared to prior
arts, it achieves the most accurate localization while con-
suming minimal resources in terms of cost-effectiveness and
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TABLE I
COMPARISON OF STATE-OF-THE-ART RFID LOCALIZATION SYSTEMS

time-efficiency. Unlike previous systems that mainly employ
more physical resources or assumptions, we take a completely
distinct approach, which is to draw power from mobility
itself. Our key insight is that ambiguity may hurt once, but
not forever. In this context, ambiguity refers mainly to the
effect of phase periodicity on actual distance measurements,
which is the main source of error composition. In other words,
while differentiating ambiguity at a time may be difficult due
to insufficient information, it becomes more tractable when
we build a network of candidate trajectories containing all
the possible ambiguities. We observe that there is only one
candidate trajectory that most closely matches the ground truth
if the object’s mobility is reasonably modeled. This scenario
is just like when we put a great number of gladiators into a
fight arena, the final survivor is the strongest one. That’s why
we call it GLAC (GLadiator trACking).

We prototype GLAC with only UHF tags and a commercial
reader with four antennas. The main results of our extensive
experiments are summarized as follows.

• The median position accuracies of x/y/z dimensions are
within 1 cm for both LoS and NLoS cases.

• In slow-moving scenarios, the median position accuracy
is 0.41 cm, which is 2.2×, 17.3×, and 14.9× better than
TurboTrack, Tagoram, and RF-IDraw, respectively, and
those gaps enlarge to 21.8×, 21.7×, and 32.6× for fast-
moving scenarios.

• The median velocity accuracy is 2.26 cm/s for slow-
moving cases, which is 5.3×, 7.6×, and 7.2× better than
TurboTrack, Tagoram, and RF-IDraw, respectively, and
those differences grow to more than 20× for all three
competitors when the target is fast-moving.

• As to localization time-efficiency, it achieves overall time
gains of 4× over TurboTrack, 72× over Tagoram, and
4× over RF-IDraw.

• GLAC-Plus’s combined percentage error of position and
velocity is 4.7× better than GLAC for high-acceleration
cases.

Contributions: We make the following contributions:

• GLAC is the first mobile 3D localization system that sup-
ports robot object manipulation using only COTS devices.
It enables robots to locate an object with an accuracy of

millimeter-level and a timescale of tens of milliseconds.
By doing so, it provides a practical tracking solution
for robotics, which is cost-effective, highly accurate, and
real-time even with NLoS.

• GLAC presents a novel RF-tracking framework formu-
lated using the HMM. It makes three key differences:
1) it leverages the object’s mobility for disambiguation;
2) it can estimate the object’s velocity in addition to its
location using only a single phase measurement; 3) it
employs a fast inference algorithm that uses nearest
neighbor pruning and solid geometry.

• A real-time prototype of GLAC is implemented, and
extensive real-world experiments show its capability of
millimeter-level tracking in real-time. As GLAC requires
only COTS gadgets, billions of deployed commercial tags
and readers are ready to benefit a wide range of agile
robot applications.

• To further contribute to the community and support
reproducibility, we have opened source the code and
experimental data of our implementation on GitHub [22].

II. MOTIVATION

To begin with, we investigate how prior systems perform
under a standard test, which can help us gain deep insights
about what the essentials are for high-precision tracking.
It goes as follows. We employ a COTS reader with 4 antennas
to continuously localize a tag moving at 40 cm/s along
a predefined track. The systems are reproduced faithfully,1

include RF-IDraw [18], Tagoram [20], and TurboTrack [16].
Results are shown in Figure 1a. We observe that all three

state-of-the-art systems perform poorly as the resulted trajec-
tories are far from the ground truth. After diving deeper into
tracking processes, we find two main factors are contributing
to this.

Oversimplified mobility models. Even though all three
systems aim for tracking, they do not draw sufficient attention
to mobility. For example, Tagoram fits the trajectory using the
estimated distance difference that is always less than λ

4 . This
strategy may lead to significant errors when the tag moves

1For details including settings, parameters and detailed results, please refer
to Section V.
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Fig. 1. Comparison using 1 COTS reader of 4 antennas. (a) When the tag’s
velocity is 40 cm/s, the trajectories of all three state-of-the-art systems are far
from the ground truth. (b) shows they are all unable to deliver high-precision
tracking with COTS devices.

Fig. 2. Oversimplified mobility assumptions cause tracking failures for all
three systems.

fast. As shown in Figure 2a, the estimated distance difference
is ∆de as it is less than λ

4 , which is wrong since the actual
distance difference is ∆da. Similar things happen to RF-IDraw
and TurboTrack as well, as shown in Figure 2b and 2c.
As RF-IDraw tracks the grating lobe that is the closest to the
last lobe and TurboTrack looks for the intersection point that is
the closest to the particle position of the previous round, both
could result in wrong picks due to the tag’s fast movement.
In short, mobility has to be properly modeled to deal with
fast-moving objects.

Low-rate asynchronous reading. One may wonder why
TurboTrack looks so bad in our test, far from that stated in the
original paper [16]. The answer is COTS readers interrogate
tags at a median rate of 30 frames/s [20] whereas SDR
readers of [16] work at 300 frames/s. Such a low-rate reading
further necessitates mobility modeling. In addition to that,
differing from SDR readers that can receive backscattered
signals simultaneously across multiple antennas, COTS readers
only support asynchronous reading for multiple antennas, i.e.,
one antenna at a time. Suppose that the delay of two successive
asynchronous readings is 30 ms,2 and the antenna reading
order is 1-2-3-4. Then the delay between the 1st antenna
and the 4th would translate to a position error of 3.6 cm
when the tag moves at 40 cm/s, which may lead to even
greater accumulated errors. Simply put, all three state-of-the-
art systems are not well prepared for low-rate asynchronous
readings.

III. GLAC DESIGN

Turning the GLadiator trACking idea into a system, how-
ever, faces three critical challenges.

1) How to reduce ambiguities with constrained COTS
devices? The basic principle of resolving ambiguities is to

2The median value measured from ImpinJ R420 and Thingmagic M6e.

acquire more information. Nevertheless, the intrinsic low
reading rate of COTS RFID devices cannot meet the demand
for high-precision. As a result, many prior systems attempt
to overcome this barrier from different perspectives. Turbo-
Track employs extra localization helpers (wideband USRPs)
that can achieve reading rates of upto 300 frames/s [16].
RF-Compass [15], PinIt [19], and MobiTagBot [21] require to
collect a number of packets on the scale of several seconds.
RF-IDraw draws information from a deliberately designed
antenna placement with 8 antennas using plane geometry.
On the contrary, we resort to mobility modeling since our goal
is to drive the development of COTS RFID localization with
no strings attached. Specifically, we build a novel framework
of localization using the HMM where spatial states at a time
are discrete and those states over time are continuous. This
way, RFID localization is translated into an HMM inference
problem. As more observations come in, the likelihood of
identifying the optimal trajectory (hidden states) increases, i.e.,
mobility over time reduces ambiguities. Further, to solve the
low-rate COTS reading problem, we design Kalman filters that
take a single phase for updating as opposed to multi-phase
feeding in all prior arts.

2) How to achieve real-time localization efficiency? The
localization time involves reading time and computation time.
While our HMM framework is designed to accommodate
single-phase readings, which achieves minimal communication
overhead, its computation overhead is prohibitive because the
number of candidate trajectories increases exponentially over
time. To address this, we employ a fast inference scheme that
includes nearest neighbor pruning and initial states pruning
techniques. Such an expedited scheme ensures that the number
of candidate trajectories does not grow over time. Given fully
optimized reading and computation time, GLAC can deliver
accurate localization with high time-efficiency.

3) How to design suitable mobility model? We’ll see that in
more details later, considering the varieties of motion patterns,
GLAC and its supplement, GLAC-Plus, will adopt different
degrees of approximation to simplify the movements and,
meanwhile, maintain high preciseness.

Next, we will first formally formulate the problem and
present the solution framework, then propose a fast inference
that achieves real-time efficiency.

A. HMM Tracking Framework

Almost all COTS readers can output backscatter phase
readings, which is a measure of the range between the reader
and tag expressed in units of cycles of the carrier frequency.
While this phase measurement can be made with very high-
precision, the whole number of cycles is not measurable. Given
the distance between the reader and tag, z, the measured phase,
ϕ, follows,

ϕ =
2πz

λ
+ δ mod 2π, (1)

where λ is the wave length, δ is the noise. Since phase
is periodic with a period of 2π radians, the phase values
will repeat at distances separated by integer multiples of
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Fig. 3. HMM framework where multiple Kalman filters are used to estimate
hidden states from phase observations.

one-half wavelength,3 zn = ϕ + nλ
2 , n = 0, 1, 2 . . ..4 We can

imagine phase as a measuring tape extending from the reader
to the tag that has numbered markers every one millimeter.
Unfortunately, however, the numbering scheme returns to zero
with every one-half wavelength. To remove such ambigui-
ties, many previous systems make various attempts including
moving antennas [19], [21], virtual antennas [20], and ded-
icated localization helpers [16], [17]. Instead, we choose to
model mobility into an HMM based on a key observation;
phases are accurate and all we need to do is to reduce
ambiguities.

The basic RFID localization problem is that given a
time series of phase measurements (ϕ0,ϕ2,. . . ,ϕκ), find the
most probable location series (P0, P2,. . . ,Pκ). We translate
this process into an HMM, as shown in Figure 3. First,
we model the mobility status of each location as θk =
(Px,k, Py,k, Vx,k, Vy,k)T , where Px,k and Py,k are x-y coor-
dinates of the location at time k, and Vx,k and Vy,k are
corresponding velocities. Second, we extend phase obser-
vation ϕk to separating distance observations (ambiguities)
Zk = (z0

k, . . . , zn
k ). Accordingly, state θk is discretized into

θ0
k, . . . , θn

k , each of which is related to the corresponding
distance observation. Hence, the original problem becomes
given a set of distance observations (Z0, Z1, . . . , Zκ),
find the most probable states (θ̂0, θ̂1, . . . , θ̂κ). Simply
put,

ˆθ0:κ = arg max
θ0:κ

p(θ0:κ|Z0:κ). (2)

Apparently, there are nκ possible trajectories with nκ

observation sequences. To find the optimal trajectory, the
simplest way is to compute the likelihood of the observation
sequence for each trajectory. Then we choose the trajec-
tory with the maximum observation likelihood among all
possibilities.

To do so, we need to estimate all the hidden states and this is
where Kalman filters come in [23]. From a high level, we put
a Kalman filter for each trajectory and estimate its mobility
statuses continuously. Before state estimation, we find there
are two important parts missing, state transition probabilities
and observation likelihoods.

3For many readers that introduce additional π ambiguity for phase values,
separating distances become nλ

4
.

4n can be set based on the maximal reading range.

Transition equation. As a general time-varying system,
we approximate state transition as a Gaussian process,

θk+1 = Aθk + sk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 θk + sk (3)

where ∆t is the time difference, sk is the system-state Gaus-
sian noise, A is the system matrix depicting mobility. Both θk

and sk follow Gaussian distribution, i.e., θk ∼ N (mk,Σk),
sk ∼ N (0,Qk), where Qk is the variance of the Gaussian
distribution, which can be used to control the upper bound of
predictions.

Observation equation. The observed distance, zk, can be
modeled as two points in Euclidean space as follows,5

zk = (
√

(Px,k −Ax,i)2 + (Py,k −Ay,i)2) + uk. (4)

where Ax,i and Ay,i are the positions of the antenna i that
reports ϕk, and uk ∼ N (0,Rk) is Gaussian noise.

State estimation. When transition and observation equa-
tions are in place, Kalman filters can be invoked iteratively to
do state estimation. Note that due to the nonlinearity of our
observation equation, the Extended Kalman Filter [24] (EKF)
is needed. Then the observation equation becomes

zk = Cθk + uk, (5)

where Ck = ( ∂zk

∂Px,k
, ∂zk

∂Py,k
, ∂zk

∂Vx,k
, ∂zk

∂Vy,k
), is the observation

matrix. Then the Kalman filter is able to predict the state at
time k + 1 using the transition equation,

θ′k+1 = Aθk (6)

Σ′k+1 = AΣkAT + Q (7)

Afterwards, an update has to be done by combing observation
equation and predicted θ′k+1 as

θk+1 = θ′k+1 + Kk+1(zk+1 −Ck+1θ′k+1) (8)
Σk+1 = (I−Kk+1Ck+1)Σ′k+1, (9)

where Kk+1 = Σ′k+1C
T
k+1(Ck+1Σ′kC

T
k+1+Rk+1)−1 is the

Kalman gain that balances transitions and observations.
The above four equations are for one round. Iterative

executions for a candidate trajectory from the beginning to
the end and then for all the candidate trajectories make all the
hidden states properly estimated. There are several distinct
features of our HMM framework with multiple Kalman filters
worth mentioning.
• As velocities are estimated together with each position,

position estimates that do not match velocity history will
be devalued significantly by the Kalman gain, reducing
ambiguities.

• To estimate the next state, we only need a single
phase measurement, which accommodates the asyn-
chronous reading mode and differs from all previous
approaches [15], [16], [17], [18], [19], [20].

• The Gaussian mixture model used by previous sys-
tems [16], [20] is no longer needed as we already

5We describe it in 2D for simplicity.
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discretized it into multiple separate Gaussian models
for Zk.

B. Fast Inference Using Nearest Neighbor

While the aforementioned HMM framework seems settled,
it has a big drawback, high complexity. Specifically, as more
phase readings come in, the candidate trajectories increase
exponentially, which conflicts the goal of real-time tracking.
As the reading time is already minimized by using only
single-phase updates, we design two techniques to achieve
computation efficiency, nearest neighbor pruning and initial
state pruning.

1) Nearest Neighbor Pruning: The basic idea of nearest
neighbor pruning is to reduce the number of candidate tra-
jectories by only connecting the nearest distance observation.
It works as follows. Suppose the state at time k of one
candidate trajectory is θi

k, then at time k + 1, this state is
only transit to state θ∗k+1 whose observation distance z∗k+1 is
the nearest to the predicted state θ′k+1. In particular, the pick
of z∗k+1 follows

zk+1 =
ϕk+1

2π
λ +

λ

2
arg min

i∈Z
|ϕk+1 + iπ

2π
λ− dk+1|, (10)

where dk+1 is the distance between (P ′x,k+1, P
′
y,k+1) and

antenna i that reports phase at time k + 1.
Apparently, our nearest neighbor pruning is a greedy

algorithm, which may achieve local optimum. But such a
sacrifice is worth it because it ensures that the number of
candidate trajectories is not growing over time, achieving great
time efficiency. While one may think our nearest neighbor
strategy is similar to the pitfalls of previous systems shown in
Section II, it has at least two major differences. First, it does
not pose any limit on location and velocity estimation, which
is different from that prior systems explicitly or implicitly set
mobility constraints through location estimates. Second, even
if sometimes the nearest neighbor strategy chooses the wrong
candidate, it could be offset somehow by our observation and
system mobility matrices through Kalman gains, whereas prior
systems do not have such correction.

2) Optimal Trajectory: After initial state pruning shown in
Appendix B, we finally come to fast compute the likelihood
of pruned trajectories by iteratively propagating beliefs.

Likelihood at initial time. Assume we have interpolated
phases ˆϕi,0, 1 ≤ i ≤ M . The likelihood at initial time is

L0 =
M∏
i=1

P (θ0| ˆϕi,0) ∝
M∏
i=1

P ( ˆϕi,0|θ0) =
M∏
i=1

F(di
0; z

∗
0 , R0),

(11)

where di
0 is the distance between antenna i and initial

position (Px,0, Py,0), z∗0 is the candidate distance closest to
(Px,0, Py,0), and F(x; µ, R) is a Gaussian probability density
function with a mean of µ and a variance of R. If we assign
weights equally across all interpolated phases, L0 can be
approximated as

∏M
i=1 F(di

0; z
∗
0 , R0) because we normalize

all the likelihoods of trajectories at every time snapshot.
Likelihood update at time k + 1. Following a trajectory,

if we have the trajectory’s likelihood at time k, its likelihood

the time k + 1 can be derived from the transition and observe
equations as

lk+1 = lkp(z∗k+1|θk+1)p(θk+1|θk), (12)
p(z∗k+1|θk+1) = F(dk+1; z∗k+1,Rk+1), (13)

p(θk+1|θk) = F(θk+1; θk,Qk+1), (14)

where F is a multidimensional Gaussian probability density
function. Similarly, all the likelihood of trajectories are nor-
malized for time k + 1.

C. Putting It All Together

We include an illustrative figure in Appendix A and sum-
marize the major steps of GLAC as follows.

1) Initially, we interpolate phases and use initial state
pruning to obtain a handful of quality initial positions
and velocities.

2) For each candidate trajectory during an update, we use
nearest neighbor pruning to select the next distance
observation and employ an EKF to estimate hidden
mobility states and the likelihood of the trajectory.

3) We normalize likelihoods among trajectories at every
time snapshot and the trajectory of the highest likelihood
is chosen as the optimal one.

The algorithm for running multiple EKF instances in paral-
lel has also been presented in [25] for mobile robot tracking.
When selecting the final estimated trajectory, we have a
distinction where [25] will take as total estimate at time t
the average of all the EKF instances, while GLAC choose the
trajectory of the highest likelihood as the optimal one.

D. GLAC-Plus

When dealing with the accelerating objects, GLAC still has
distinct advantages. However, we suspect that the weakness
will show up at low data frame rates on account of two main
reasons which can be summarized as low-rate loss. In terms of
this issue, acceleration modeling is proposed to accommodate
scenes with both accelerating motions and restricted rates.

1) Low Rate Loss:
• Data Poor. Obviously, a discrete sequence of kinestates

implies infinite trajectories. The lower the sampling rate
is, the greater the ambiguity will be between each data
point, which is an inherent flaw in this system.

• Simplified Motion Model. We assume that the displace-
ment is continuously differentiable as a function of time.
The velocity modeling essentially represents a first-order
approximation of Taylor series as follows,6

x(t)=
x(t0)
0!

+
x′(t0)

1!
(t− t0)+

x′′(t0)
2!

(t− t0)2 + . . .

(15)

As sampling rates reduce, time interval, t− t0, turns
larger, hence the need to employ higher order estimates.
In acceleration modeling, we’re introducing the second
order.

6We illustrate it in 1D.
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2) Acceleration Modeling & Differences: On the basis of
the original mobility status as θk = (Px,k, Py,k, Vx,k, Vy,k)T ,
we add two extra dimensions like

Θk = (Px,k, Py,k, Vx,k, Vy,k, Ax,k, Ay,k)T

to acquire more precise assessment. With more specific details,
EKF iterations could improve the overall fitting of the motion
state involving location and speed. The modules update
accordingly as follow:

1) Transition equation. The second order term of the
motion equation is introduced. Sk has merely expanded
on the dimensionality of sk as previously declared.

Θk+1 = A6,6Θk + Sk (16)

=


1 0 ∆t 0 ∆t2

2 0
0 1 0 ∆t 0 ∆t2

2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

Θk+Sk

(17)

2) Observation equation. Equation 5 indicates that Ck

should be updated to

Ck = (
∂zk

∂Px,k
,

∂zk

∂Py,k
,

∂zk

∂Vx,k
,

∂zk

∂Vy,k
,

∂zk

∂Ax,k
,

∂zk

∂Ay,k
),

3) Initial acceleration. Since we have calculated the initial
position and velocity with two data points each antenna,
just one more data point each is adequate to measure
the initial acceleration.

4) Likelihood computation. Similar to Equation 14, F is a
multidimensional Gaussian probability density function
which includes the dimensions of acceleration. In addi-
tion, the distribution of state quantity can be set freely
according to the specific motion mode.

IV. IMPLEMENTATION

Equipment. We build a prototype using a Thingmagic M6e
reader [26] with 4 omnidirectional antennas, which are placed
on a plane at (0,0), (0,30), (0,80) and (80,80).7 The antenna
belongs to the monopole antennas, which usually have a Gain
of up to 5 dBi and a Half Power Beam Width distribution
of 45◦ × 360◦ respectively in the vertical and horizontal
planes. Target objects are attached with multiple kinds of
tags, including Alien 9640 [27], ImpinJ Monza 4D [28], and
SMARTRAC DogBone [29]. The whole system contains a
800-dollar reader, 4 antennas priced at $4 each and several
tags with a price of about 10 cents. For 2D-tracking, we use a
C1-intelligent car, which is remotely controlled through wire-
less in such a way that it can handle straight-line tracking at
different speeds (10 cm/s to 40 cm/s), whereas for 3D-tracking,
a VANBOT 4DoF robotic arm [30] are tested, as shown in
Figure 8. The VANBOT digital servo [31] driving the robot
arm has an adjustable torque of 12-20 kg·cm and a rotation
speed of up to 0.16 sec/60◦.

7This is not mandatory as our solution supports arbitrary placements and
the implicit coordinate system is in centimeters.

The localization software is programmed using Java and
Mercury APIs [33], which collect phase readings from the
reader to a laptop. Two threads are involved; one for GUI
and the other for trajectory updates when a new phase reading
comes in. The whole system works in real-time.

Handling Phase Offset. The phase model (Equation 1)
omits an important contribution to the phase data which
is the circuitry and tag offset, which differs from tag to
tag and from reading antenna to reading antenna. Some
calibrations mentioned in [34] and [35] on the phase seem
inevitable. However, in our previous work [36], we have
measured the phase offset of the same antennas used in this
paper.

The specific procedure is like this: Firstly, our experiment
confirms the linear relationship of Equation 18, where ϕ0 is
the phase offset introduced by hardware interface. We fix
the position of the antenna, move the tag from 10 cm to
100 cm away, and measurement is performed every 5 cm.
Every measurement lasts 30 seconds and the mean phase is
recorded. Then, we unwrap every phase by subtracting an
integer multiple of π. The unwrapped phase has good linearity,
so we linearly fit it. The fitting line is very close to the
theoretical line, signifying that phase is a good measure of
distance.

Secondly, a static calibration can be used to solve this
problem. There is a linear relationship between phase and
distance, and the slope is known. Therefore, only one equation
is needed to solve the line. Put the tag stationarily at a known
place and measure the mean phase for every antenna, we can
easily get the phase offsets of all antennas. Fortunately, if we
don’t change the antenna setup, calibration should only be
done once.

ϕ =
2πz

λ
+ ϕ0 + δ mod 2π, (18)

Experimental Environment. To obtain ground truth,
we use an OptiTrack system [37], which costs $200,000.
It is a vision-based camera-array system that can capture
3D-motions with 0.1 mm accuracy. It also has 360 fps and
2.8 ms latency, which qualifies for position ground truth.
The experiments are conducted in various indoor environ-
ments, including classrooms with tables and chairs, library
with benches and bookshelves, and lab environments full
of work-counters and computers. Both LoS and NLoS tests
are performed. Similar to past works [16], [18], the NLoS
scenarios are built with putting separators to block the LoS
between the antenna and the RFID tag, and since OptiTrack
can only work in LoS, we let the tracking marker remain
in LoS for cameras while keeping the tag in NLoS for
antennas.

Competition. State-of-the-art competitors includes:
• TurboTrack [16] represents an high-precision tracking

system achieving sub-centimeter accuracy for 3D. For
fair-comparison purposes, TurboTrack here is reproduced
with COTS devices, instead of SDRs. Also, one-shot
wideband estimation is not implemented as it is not
compatible with COTS readers. All the rest modules are
faithfully reproduced.
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Fig. 4. CDFs of GLAC’s position errors in x/y/z dimensions for LoS and NLoS scenarios, where the cumulative distribution function (CDF) of a real-valued
random variable X , or just distribution function of X , evaluated at x, is the probability (replaced by frequency) that X will take a value less than or equal
to x. [32].

Fig. 5. Position and velocity errors of slow-moving (10 cm/s) and fast-moving
(40 cm/s) motions for GLAC, TurboTrack, Tagoram, and RF-IDraw. Error bars
indicate the 10th and 90th percentiles.

Fig. 6. The relationship between the phase values of the tag and the distance
from the tag to the antennae during motion at different speeds, comparing
theoretical values with measured values.

• RF-IDraw [18] is a representative of accurate shape-
tracking system. But the original proposal requires
8 antennas and 2 readers, which is far more than
other competitors. So for fair competition, we adopt a
4-antenna version [38] that keeps all of the essential
components and only differs in antenna placement.

• Tagoram [20] stands for decimeter-level tracking using
COTS RFIDs. It can track only in 2D as its computation
overhead is overwhelming for 3D. Our implementa-
tion set the resolution to 1000 × 1000. Note that the
known-track version in the original paper is not suitable
for robotic tracking and thus not implemented.

• RFind [17], RF-Compass [15] and PinIt [19] are not
presented as benchmarks mainly because their USRP
implementations are difficult to migrate to COTS devices.

• MobiTagBot [21] is not adopted since it is only imple-
mented in one dimension.

V. EVALUATION

A. Performance

We first examine GLAC’s performance of 3D localization
in detail, and then compare it against three state-of-the-art
systems with respect to position accuracy, velocity accuracy,
and time-efficiency.

1) 3D Accuracy: We evaluate GLAC’s 3D tracking accu-
racy in both LoS and NLoS scenarios. More than 50 exper-
imental trials are conducted, which amounts to over 10,000
phase readings. For each trial, we program the robotic arm to
move the target object along both regular and arbitrary tracks.
The position error is calculated as the Euclid distance between
the estimated location and the ground truth.

Figure 4 shows CDFs of position errors for both LoS and
NLoS cases. We observe that the median accuracies of all
x/y/z dimensions are within one centimeter for all scenarios.
In particular, the median accuracies of x/y/z dimensions are
0.35 cm, 0.35 cm and 0.52 cm in LoS settings, while counter-
parts are 0.57 cm, 0.40 cm and 0.73 cm in NLoS settings,
which degrade slightly due to lower SNRs. Moreover, the
90th percentiles are within 2 cm in both scenarios for each
dimension. Those results fully manifest GLAC’s ability for
high-precision tracking. This is mainly attributed to our HMM
framework that removes ambiguities, which lets the optimal
trajectory stand out by gaining more and more likelihoods
through mobility.

2) Mobility Comparison: Next, we intend to investigate
how GLAC and prior arts perform in different mobilities.
The intelligent car is programmed to move along the track at
various velocities from 10 cm/s to 50 cm/s. Our experimental
trials are conducted in 2D for fair comparison, as RF-IDraw
and Tagoram only support 2D-tracking.

Figure 5a shows detailed comparisons of position errors
under two representative settings: 10 cm/s for slow movement,
and 40 cm/s for fast movement. The results show that GLAC
is significantly better than all three state-of-the-art systems
in both cases. Specifically, at a velocity of 10 cm/s, the
median position accuracies of GLAC, TurboTrack, Tagoram
and RF-IDraw are 0.41 cm, 0.90 cm, 7.09 cm and 6.09 cm,
respectively. When the velocity increases to 40 cm/s, GLAC’s
median position accuracy degrades slightly to 0.95 cm. In con-
trast, those of TurboTrack, Tagoram and RF-IDraw surge to
20.7 cm, 20.6 cm and 31.0 cm, respectively. In other words,
in the slow-moving case, GLAC’s median position accuracy is
2.2×, 17.3×, and 14.9× better than TurboTrack, Tagoram, and
RF-IDraw, and when it comes to the fast-moving case, those
gaps enlarge to 21.8×, 21.7×, and 32.6×. As supplementary
information, we provide the actual measured and theoretical
distance-phase relationship curves at 10 cm/s and 40 cm/s,
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as shown in Figure 6a and Figure 6b. When RFID tags operate
at higher velocities, the phase measurement error becomes
more pronounced; however, our model effectively mitigates
this ambiguity.

Besides absolute position, another important metric of
mobility is velocity. We compare GLAC’s velocity error
against three competitors, as shown in Figure 5b. While
three competitors do not provide explicit velocity computation,
we approximate that as the quotient of the position and time
differences between two successive states. Again, the velocity
estimation results demonstrate that GLAC is consistently better
than prior arts for both dynamic scenarios. In particular,
for the slow-moving case, the median velocity accuracy of
GLAC is 2.26 cm/s, which is 5.3×, 7.6×, and 7.2× better
than TurboTrack, Tagoram, and RF-IDraw, respectively; with
the velocity increased to 40 cm/s, the gaps grow to 23.1×,
21×, and 21.4×. Note that although TurboTrack achieves
sub-centimeter median position accuracy in the slow-moving
case, the corresponding velocity error is as large as 12 cm/s,
which is far from 2.26 cm/s, the counterpart of GLAC.
This reaffirms that accurate position estimates alone do not
guarantee the quality of velocity estimates. Two main factors
are contributing to the above performance gaps.
• Prior arts listed above do not take care of asynchronous

phase readings, although a few studies like [39] have
presented this problem. When fast-moving tags meet low-
rate phase readings, the position errors will inevitably
increase dramatically. In contrast to that, GLAC novelly
synchronizes phases from different antennas for initial
state estimation and customizes Kalman filters that can
take a single phase for each update.

• In addition, those state-of-the-art systems barely pay
attention to mobility models and thus can only derive
velocity from position estimates that already contain non-
negligible errors. As a result, when the tag moves at
a high velocity, position errors inevitable cascade over
velocity estimates and future position states. Instead,
GLAC models the velocity and position together as the
mobility status and update it in an accurate way.

3) Time-Efficiency Comparison: Other than high precision,
real-time is one of our design goals. We evaluate the time
efficiency of GLAC together with prior systems. We decouple
the total time of deriving one position estimate into commu-
nication time for reading phases and computation time for
localization.

Table II shows the average time cost of over 100 experiment
trials. The results clearly show that GLAC is the most time-
efficient system. We break these gains down and find that
communication is the dominating factor, except for Tagoram.
In particular, GLAC is the winner for communication overhead
as it only requires a single phase to predict the next location,
whereas the other three systems need at least 4 packets.8 As
to computation overhead, GLAC is 5.2× and 24300× better
than TurboTrack and Tagoram. This is because TurboTrack

8Other work [40] has reported faster reading rates through a set of rate
adaption techniques, which we plan to investigate in the future for further
performance optimization.

TABLE II
LOCALIZATION TIME COMPARISON

Fig. 7. Decomposing mobility gains. This figure plots the CDFs of position
errors for different partial implementations of GLAC.

uses Particle Filter, which requires a large number of particles
to represent the Gaussian distribution, while GLAC employs
EKFs that efficiently uses a covariance matrix for Gaussian.
Tagoram’s huge delay stems from its inefficient exhaustive
search. Note that RF-IDraw is the best computation-efficient
system, but after counting communication time in, it is not
the winner for the overall time cost. In short, GLAC achieves
the best overall time-efficiency among all thanks to shortest
reading time brought by single-phase update and decent com-
putation time resulted from our fast inference scheme.

B. Micro Benchmarks

After evaluating the overall performance, we now focus on
the performance of constituent modules, which helps under-
stand how GLAC works in detail.

1) Gains of Mobility Modeling: Next, we would like to
quantify the effectiveness of our mobility model, namely
velocity modelling and ability to dealing with asynchronous
phase readings. In particular, we make three variants with
partial implementation of the standard GLAC process. The
four competitors are as follows.

1) Asynchronous handling & velocity modeling. This is
the standard GLAC, which is used as the baseline.

2) Asynchronous handling without velocity modeling.
The first variant scheme is to remove velocity modeling,
which changes Equation 3 as follows:

θk+1 =
(

1 0
0 1

)
θk + sk.

This is built to examine how much the velocity modeling
helps localization.

3) Synchronous handling with velocity modeling. The
second variant scheme is to investigate the impact of
asynchronous handling. So we treat every 4 successive
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Fig. 8. Robotic arm tracking: (a) shows the robotic arm carrying an item attached with an RFID tag and an OptiTrack Marker. (b) and (c) show the trajectories
of GLAC and the ground truth for rotating and lifting operations.

phase readings from 4 antennas as four synchronous
phase readings, which is the way widely adopted in
most prior arts [16], [18], [20]. Specifically, we change
Equation 4 to:

zk =
(

1 0
0 1

)
θk + uk.

Note that zk here is the position estimates obtained
by the trilateration similar in initial position estimation,
and we pick the one nearest to the predicted position
as z∗k for fast inference. As to likelihood computation,
p(z∗k+1|θk) is replaced by

∏4
i=1 p(z∗i,k+1|θk), where

z∗i,k+1 is the candidate distance nearest to the predicted
state θk+1

′, as we assume the phase readings across
4 antennas are independent.

4) Synchronous handling without velocity modeling. The
last scheme is the combination of (2) and (3).

The above four schemes are fed with the same input
including various mobilities (from 10 cm/s to 50 cm/s) and
output 2D coordinates for simplicity. The CDF results are
plotted in Figure 7, and we have the following observations:
• Unsurprisingly, the standard GLAC is the best. In particu-

lar, the median position errors of the above four schemes
are 0.71 cm, 1.80 cm, 3.73 cm and 9.12 cm.

• Velocity modeling indeed effectively boosts the system
performance. In particular, the median position accuracy
of scheme 1 is 2.5× better than that of scheme 2. Like-
wise, scheme 3’s median position accuracy is 2.4× better
than scheme 4’s. The main reason is that without proper
velocity modeling, the transition equation’s expressive-
ness becomes quite limited because it only describes a
stationary model where all motions are considered as
noise, resulting in huge mobile localization errors.

• Asynchronous handling also constructively improves
localization accuracy. Specifically, the median accuracies
of asynchronous handling (schemes 1&2) are at least 5×
better than synchronous handling counterparts (schemes
3&4). The root cause is that synchronous handling may
be a good approximation when frame rates are high, like
in [16]; however, it inevitably brings more errors when
the reading rate (e.g., 30 reads/s) and high-mobility (e.g.,
30 cm/s) happen at the same time.

2) Gains of Fast Inference: In addition, we intend to eval-
uate the computation-efficiency brought by our fast inference

TABLE III
TIME AND ACCURACY FOR FAST INFERENCE AND NAIVE INFERENCE

design. We compare two schemes, GLAC with fast inference
and that with naive inference. So, we run two schemes at the
same time with the same data, and then check how well they
perform at the same time snapshots.

Results are listed in Table III. We observe that fast infer-
ence is significantly better than naive inference in terms of
time-efficiency and accuracy. This is mainly due to that fast
inference guarantees the number of trajectories (no. of EKFs)
does not increase with time. In consequence, it can go further
for iteration depth, which means mobility effectively reduces
ambiguities. In particular, with 500 ms, fast inference is
left with a trajectory of depth 7,8000 (clearly the optimal
one), whereas naive inference’s iteration depth is only 3,
which makes tons of EKFs (98,000) inefficient. Even with
10s, a large number of EKFs with shallow depths only
make a median accuracy of 24.1 cm. Hence, deep itera-
tion depth brought by fast inference is the key to real-time
high-precision.

Another observation is with the help of quick stop and fast
inference, the optimal trajectory converges even faster. Recall
that without fast inference, the number of candidate trajectories
increases exponentially as there are n candidate distance obser-
vations with a single phase. And each candidate trajectory
requires an EKF for updating. Specifically, the number of
trajectories for naive inference is O(nκ), where κ the number
of time snapshots, and that of fast inference is O(n). After
combined with quick stop, the number of trajectories for fast
inference at 500 ms plummets to only 1, which is 400× lower
than the number of trajectories at 10 ms.

C. Precise Manipulation Showcase

Finally, we show the qualitative performance of GLAC’s
precise 3D manipulation in Figure 8. During rotating and
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Fig. 9. Low-rate loss on GLAC. (a) shows the impact of both sampling rate
and accelerating motions on the trajectory’s median position error. (b) is for
the Velocity Error. Error bars indicate the 10th and 90th percentiles.

Fig. 10. Performances with GLAC-Plus compared to Figure 9.The additional
conditions are the same as above.

lifting operations by the robotic arm, GLAC is able to
track 3D-movements at sub-centimeter accuracy, demon-
strating GLAC’s great potential to enable a range of
high-precision robotic applications, such as furniture assembly
through multi-robot cooperation, and even robot-assist precise
surgeries.

D. GLAC-Plus Optimization

We have implemented a simulation experiment which
collects the trajectory’s estimation error as changing the fre-
quency of input data. The stimulative tag is moving in a
straight line at an acceleration of 4 centimeters per second
squared. Figure 9 indicates the results that the performance of
GLAC drops sharply below 10 frames per second.

After we upgrade the model and repeat the experiment,
Figure 10 demonstrates the advantage of the acceleration
modeling. It still maintains excellent performance in the case
of limited sampling rates.

In addition to that, GLAC-Plus’s combined estimate of
location and speed is assumed to be superior to GLAC’s.
In order to measure the combined error of position and veloc-
ity, we define another new quantity given by this expression,

δ =
|∆p|
σp

+
|∆v|
σv

,

where ∆p and ∆v are the errors between predicted results
and the ground truth, σp and σv are the standard errors
of the equipment. As Figure 11 shows, two variable speed
motion modes are simulated so as to measure δ. Note that the
simulations are conducted at the reading rate of 80 frames per
second. Therefore, sampling rate is not an influencing factor
in this experiment. In fact, GLAC-Plus reduces the combined
error especially for the objects with high acceleration, but

Fig. 11. Combined percentage error, δ, for GLAC and GLAC-Plus. Error
bars indicate the 10th and 90th percentiles.

introduces more ambiguity rendering the gaps between error
bars larger.

VI. RELATED WORK

RF-Localization. There has been much work on RF local-
ization using COTS and SDR devices, including LTE [41],
[42], Bluetooth [43], [44], RFID [16], [18], [20], [36] and
WiFi [45], [46], [47], [48], [49]. Among these, RFID-
localization can be broadly classified into two categories:
fingerprint and trigonometry. The fingerprint-based methods
are built based on the assumption that each distinct loca-
tion has its own unique RF-signature [19], [50], while the
trigonometry-based methods are generally more accurate as
both triangulation [51], [52] and trilateration [16], [17] are
derived from fine-grained phase measurements.

While GLAC falls into the trigonometry category and shares
similarity with prior arts from a high level, the crucial differ-
ence is that we aim to realize real-time 3D localization using
only COTS RFID devices. Bearing this in mind, we novelly
model mobility using the HMM and employ it to reduce
ambiguities without any other extra hardware or assumptions.
This is distinct new thinking and hope it will fuel more
community interests along this line.

Unlike GLAC’s focus on moving tag tracking, some pro-
totypes assume that the antenna is in motion in static tag
scenarios, where the SAR principle has a wide range of appli-
cations [53], [54], [55], and some analyses of this principle
has been discussed separately [56].

Linear Gaussian Models. It is known that factor analy-
sis [57], mixtures of Gaussian clusters [58], Kalman filter [59],
and HMM [60] can be generalized to linear Gaussian mod-
eling [61], [62], which has extensive applications, such as
inertial navigation, speech recognition, and stock market fore-
casting. Based on existing fruitful literature of linear Gaussian
models, our work is custom-built. In particular, as the standard
type of HMM usually considers discrete states, we carefully
examine our problem and build our own HMM where ambigu-
ous states at a time are discrete and do not transit, whereas
temporal states are continuous and estimated through Kalman
filters. We also design a fast inference scheme to choose the
optimal trajectory in real-time.
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Mobility Model. Mobility is an important metric and has
been widely used in wireless networks from many aspects,
including network capacity [63], [64], [65], rate adaption [40],
[66], [67], [68], throughput control [69], and wireless sens-
ing [70]. Nevertheless, those works are mainly focused on
coarse-grained mobility. For example, Blink [40] only detects
the tag is moving or not. Tagwatch [69] requires a couple
of seconds to derive mobility states. On the contrary, this
work models and derives fine-grained mobility, which is
complementary to the above works and thus can be integrated
to improve wireless networks, e.g., better network coverage
for mobile nodes and higher throughput by being aware of
mobility.

VII. DISCUSSION AND CONCLUSION

Finally, a few points are worth elaborating on,
• Requiring Motion. One limitation of GLAC stems from

fact we need mobile targets to distinguish ambiguities
and pick the right trajectory. For static objects, our initial
position estimation can be invoked as many as needed.
As shown in evaluations, the 90th percentile error for
such is less than 2 cm, which is sufficiently accurate
for many purposes. Then we must acknowledge that for
the accuracy of subsequent tracking, the initial motion
speed cannot be too fast, otherwise it will bring more
loss of initial estimation, which in turn cascades to affect
the overall tracking accuracy. Of course, we can also
design a learning algorithm to identify whether the object
is moving or not by going through a training process,
which is worth further investigation as it would require
re-training for various objects.

• Convergence rate. The readers may wonder how many
steps GLAC takes to make the estimated trajectory and
groundtruth match, and what is the percentage of success
for GLAC converging to groundtruth each time. Our
results have not been quantified, but we currently provide
a Recovery mechanism to prevent the results from varying
too much, and this does not avoid the possibility of not
converging. At least for now, it doesn’t seem to be a
problem with significant impact. We plan to explore the
performance of the average convergence steps of GLAC
in future work.

• Working Range. As our system is built upon COTS
RFID devices, it inherits the relatively short working
range, which is about 7-10 meters. The effective range
of our prototype is also limited to 80 cm × 80 cm,
which means that the signal-to-noise ratio is relatively
high and the phase aliasing problem is not particularly
pronounced. Yet, such a limitation is not fundamental
to our design. To break it, we intend to explore beam-
forming [71], which uses multiple antennas to boost
signal strengths arriving at target tags. Other possibilities
include semi-passive/active tags [72], and novel backscat-
ter paradigms [73], which can typically work at longer
distances, 50-200 meters.

• Manipulatee Size. Currently, the size of objects that
robots manipulate is limited to commercial tags’ sizes.

While a typical RFID chip has about a 500µm× 500µm
die size, which is indeed tiny, the dimensions of tag inlays
are much larger, e.g., an ImpinJ H47 wet inlay is of
47mm × 47 mm, and an Alien 9640 inlay is 95mm ×
8 mm. To push such limits, we can either adopt antenna
reduction techniques, e.g., Circular Loop Antenna [74],
or try RFIDs at much higher frequencies [75] that have
much shorter wavelengths.

• Transferability. Our key idea that mobility improves
accuracy is general and can be extended to other RF
systems, such as Bluetooth, WiFi, and LTE. Nevertheless,
such adaptations have to take care of RF receivers’
form factors, which are usually larger than RFIDs, and
identification, which is not natively supported. Other
constraints, assumptions, and requirements of those RF
systems also pose new challenges, which we are going
to investigate in future work.

Overall, we believe that GLAC marks an important step
towards precise robot control using COTS RFID systems. With
the novel HMM framework and fast inference technology,
it pushes the envelope of real-time RFID localization and
tracking to the millimeter-level accuracy without requiring
any extra hardware and restrictive mobility for tags and
readers. By doing so, it paves the way for fast and wide
adoption of cheap and readily available commercial RFIDs in
robotic applications demanding high-precision, e.g., welding,
assembly, and surgeries.
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