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ABSTRACT
Frequency domain analysis is widely conducted on time series.

While online transforming from time domain to frequency do-

main is costly, e.g., by Fast Fourier Transform (FFT), it is highly

demanded to store the frequency domain data for reuse. However,

frequency domain data encoding for efficient storage is surpris-

ingly untouched. We notice that (1) the precision of data value is

unnecessarily high after transforming to frequency domain and

(2) the data values are with skewed distribution leading to a very

large bit width for encoding. To avoid such space waste in both

precision and skewness, we devise a descending bit-packing encod-

ing for frequency domain data. Specifically, we quantize the data

values in proper precision referring to the signal-noise-ratio (SNR)

in frequency domain analysis. Moreover, we sort the data values

in descending order so that the bit width could be dynamically

reduced in encoding. The method has been deployed in Apache

IoTDB, an open-source time-series database, not only for directly

encoding frequency domain data, but also as a lossy compression

of the time domain data. The extensive experiments on the system

demonstrate the superiority of our encoding for both frequency

domain and time domain data.
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1 INTRODUCTION
Frequency domain analysis [8] is widespread in analyzing time se-

ries data. After performing FFT on a time series, we get a sequence

of complex values corresponding to the entire frequency spectrum

[29], i.e., the range of frequencies contained by the time series.

Each value represents a sine wave at the specified frequency called

frequency component (also called “coefficient” interchangeably).

Utilizing the amplitude and frequency of components, there are

many applications of frequency domain analysis. For example, anal-

ysis of vibration data by airlines helps identify potential problems

with aircraft [47]. For an electrical company, the identification and

repression of ultra-harmonics (frequency components ranging from
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Figure 1: Example of data in time and frequency domain

2-150 kHz) ensure the measurement accuracy of electric energy

meters [35].

1.1 Motivation
While frequency domain analysis is repeatedly conducted for vari-

ous applications, online computing of time-frequency transforma-

tion is costly due to its quasilinear time complexity. Unfortunately,

most time-series databases, such as Apache IoTDB [5] or InfluxDB

[10], do not directly support efficient storage of the frequency do-

main data for reuse. Let us first identify the unique features for

encoding and storing frequency domain data.

(1)Unnecessarily high precision: The frequency domain data trans-

formed from time domain, e.g., by FFT, are with very high precision

in theory. However, such high precision is not necessary for analy-

sis. For example, when detecting the seasonality [42], we only focus

on where the peak is, paying no attention to the exact amplitude of

each component. The high precision unfortunately brings a heavy

pressure on storage. Figure 1 shows the time domain data of air

temperature in a period and its transformed frequency domain data.

As shown in Figure 1(b), only 8 components among 1024 are with

amplitude greater than 0.25, while most others are ignorable noises

(lower than 0.25) with unnecessarily high precision.

(2) Extremely skewed distribution: The distribution of amplitudes

of frequency components is extremely skewed with huge value

spread. In other words, the difference between the maximal and

minimal amplitude is several orders of magnitude. For example, as

shown in Figure 1(b), the maximal amplitude 73.5 in frequency 0 is

8-bit wide, while the bit widths of other amplitudes are only 1-3.

The skewness leads to a serious bit waste if all values are encoded

with the same width.

1.2 Intuition
Existing methods cannot handle the precision and skewness well.

For lossless encoding Gorilla [38], only few bits are the same for

neighboring high-precision values. For differential methods [32],

the data range cannot be reduced due to the large difference between

nearby values. Besides, fixed-width bit-packing [33] encodes all
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values with the maximum bit width, wasting a lot of bits for small

values.

To overcome the issue of high precision, quantization [34] is

used to reduce to a proper precision. Without knowing the data

distribution, manually specifying the precision to quantize is dif-

ficult. Instead, we use the standard signal-noise-ratio (SNR) [31]

in frequency domain analysis to specify the difference that can be

tolerant before and after quantization. After that, frequency domain

is sparse because most components are lower than half-precision

(the red line) and quantized to 0, as shown in Figure 1(b).

To address data skewness, our solution is specifying unique

encoding bit width for each value. Instead of indicating bit width

explicitly with extra bits, we specify implicitly as the valid bit width

of the previous one. This method only works if valid bit widths

are not increasing. Therefore, we sort the non-zero components in

descending order in advance, which is the reason why we call our

method descending bit-packing.

1.3 Contributions
To the best of our knowledge, this is the first study on encoding

frequency domain data. Our major contributions are as follows:

(1) We observe the skewed distribution of frequency domain

data, and significantly reduce the number of non-zero coefficients

by quantization. While the quantization level needs to be deter-

mined individually for different datasets due to their distinct value

precision, we propose to use SNR to automatically derive the quan-

tization level.

(2) We propose to order the values after quantization such that

the number of bits to represent each non-zero coefficient decreases

with the descent of values. The more the data distribution is skewed,

the faster the bit-width decreases, leading to lower space cost.

(3) We may apply additional compression to the output stream

of encoding, to further reduce the space cost with some extra cost

in compression/decompression speed. Our proposal has been in

use in Apache IoTDB, an open-source time-series database.

(4)We report an extensive experimental evaluation on the system

in Section 4. The results illustrate the superiority of our proposal

in encoding frequency domain data.

The code of our proposal [4] has been available. The notations

frequently used in this paper are listed in [7].

2 FREQUENCY DOMAIN DATA ENCODING
2.1 Overview
The overview of the encoding and decoding procedure is illustrated

in Figure 2, using the example data in Figure 1. It starts from the

frequency domain data in Figure 2(b) transformed from the time

domain data in Figure 2(a). As shown, the transformed frequency

domain values are with very high precision, often unnecessary

owing to noises. Quantization is thus to map the high-precision

values, with heavy storage overhead, to a smaller set of discrete

values. For instance, in Figure 2(c), only one digit is reserved after

the decimal point.

After quantization, only a small set of non-zero values are pre-

served, as shown in the red rectangle in Figure 2(c). Note that the

values are in a skewed distribution, i.e., some values are signifi-

cantly larger than others. It is obviously inefficient to assign the

same bit-width for all of them in storage. Intuitively, we may con-

sider the values in descending order, such that the latter smaller

values will never occupy more space than the former larger ones.

The encoding process thus reduces the space assigned to the de-

scending values, in Figures 2(f) and (i). To recover the order of these

values in decoding, the index of each value should also be encoded

and stored in advance, in Figures 2(e) and (h).

2.2 Quantization
The quantization step considers a number of𝑀 values in frequency

domain in Figure 2(b), and generates the corresponding low preci-

sion values. Only those non-zero values are reserved after quanti-

zation as illustrated in Figure 2(c).

2.2.1 Manually Specifying Quantization Level. In quantization, we

use a manual integer parameter quantization level 𝛽 to specify the

place of precision in binary as shown in Figure 2(c), which can

be implemented with bit operations. In other words, each 𝑦 [𝑖] is
quantized to an integer round(𝑦 [𝑖] · 2−𝛽 ) and can be recovered by

multiplying 2
𝛽
. After quantization, frequency domain data turns to

proper precision.

2.2.2 Automatically DeterminingQuantization Level with SNR. With-

out knowing the data distribution, manually specifying the quanti-

zation level 𝛽 could be difficult. Instead, by using the standard SNR

[31] in frequency domain analysis, one may specify the tolerable

difference before and after quantization. With such SNR tolerance,

we can automatically determine the quantization level 𝛽 .

Regarding the difference before and after quantization as noise

[31], SNR is the ratio of the energy of original data and noise. Let

𝑇SNR denote the target SNR, our intuition is to find a maximum 𝛽

whose actual SNR is not lower than 𝑇SNR. Formally, we have

10 log
10

𝑁−1
𝑖=0 𝑦 [𝑖]2𝑁−1

𝑖=0 (𝑦 [𝑖] − round(𝑦 [𝑖] · 2−𝛽 ) · 2𝛽 )2
≥ 𝑇SNR (1)

where the left side of the inequality is the definition of SNR.

In order to find a maximum 𝛽 , we start the search from a small

𝛽 which always satisfies with formula 1. Since the rounding error

|𝑦 [𝑖] −round(𝑦 [𝑖] ·2−𝛽 ) ·2𝛽 | has an upper bound 2𝛽−1, substituting
it into formula 1, 𝛽 is initially set to the following value:

𝛽 = ⌊ 1
2

log
2

10
−𝑇SNR/10 ·𝑁−1

𝑖=0 𝑦 [𝑖]2

𝑁
⌋ + 1 (2)

We keep increasing 𝛽 until the actual SNR is lower than 𝑇SNR.

With the above method, 𝛽 is determined by 𝑇SNR. In Section

4.2.4, we experimentally evaluate the influence of 𝑇SNR. Practically,

increasing 𝑇SNR leads to worse space efficiency but lower accuracy

loss, which needs a trade-off according to the detailed situation of

frequency domain analysis.

Example 2.1. Refer to Figure 1, suppose 𝑇SNR = 35𝑑𝐵, initial 𝛽

is -5 according to formula 2. We keep increasing it and find that

actual SNR is 32.3𝑑𝐵 < 35𝑑𝐵 when 𝛽 = 0. At that time, the search

of 𝛽 stops. Figure 3 shows the number of non-zero components𝑀

and SNR when 𝛽 is from -5 to 0. Finally, we select 𝛽 = −1 as the
quantization level in Figure 2(c).
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Figure 2: Example of frequency domain data encoding
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2.3 Index Encoding
To recover the values in the original order in Figure 2(b), we also

need to encode and store the index of each value. Consider a se-

quence z of𝑀 integers ranging from 0 to 𝑁 − 1 in Figure 2(e). The

output of index encoding is shown in Figure 2(h).

Indexes are encoded with groups. Every 8 integers in z are

grouped together. In a group, we get the max bit width 𝑊𝑧 of

all integers and encode each of them with𝑊𝑧 bits. Because the

maximum of z is 𝑁 − 1, we have
𝑊𝑧 ≤ ⌈log2 𝑁 ⌉

Thus,𝑊𝑧 is encoded as 𝐵 = ⌈log
2
log

2
𝑁 ⌉ bits. The main procedure

of index encoding is shown in Algorithm 1.

Algorithm 1: IndexEncode(z, 𝑀, 𝑁 )
Data: index sequence z, sequence length𝑀 , index range 𝑁

1 𝐵 ← ⌈log
2
log

2
𝑁 ⌉;

2 𝑖 ← 0;

3 while 𝑖 < 𝑀 do
4 𝑊𝑧 ← max{width(z[j]) | 𝑗 ∈ [𝑖,min(𝑀 − 1, 𝑖 + 7)]};
5 Encode𝑊𝑧 with 𝐵 bits;

6 for 𝑗 = 𝑖 → min(𝑀 − 1, 𝑖 + 7) do
7 Encode z[j] with𝑊𝑧 bits;

8 𝑖 ← 𝑖 + 8;

Example 2.2. Suppose 𝑁 = 1024 and 𝑀 = 8, we have an in-

dex sequence z = {0, 1, 11, 2, 12, 4, 3, 10}. All 8 integers belong

to the same group. To encode the group, we first calculate 𝐵 =

⌈log
2
log

2
1024⌉ = 4. Then, we find that the max bit width𝑊𝑧 =

width(12) = 4.𝑊𝑧 is encoded as 0100 with 4 bits and 8 integers

are encoded with 4 bits each as shown in Table 1. Finally, the index

sequence is encoded with 36 bits as 01000000 00011011 00101100
01000011 1010.

2.4 Value Encoding
The value encoding considers a sequence v of𝑀 positive descending

integers, as illustrated in Figure 2(e). The key insight is that the

encoded bit width of an integer is the valid bit width of the previous

integer. Meanwhile, the descending order means that the bit width

is never larger than the previous one, which ensures the correctness

of value encoding. The value encoding output is shown in Figure

2(i) and the main procedure is shown in Algorithm 2.

Proposition 2.3. Descending bit-packing uses width(v[0]) −
width(v[M − 1]) more bits in encoding than the total number of
valid bits.

The proofs of all the propositions are shown in [7].

Proposition 2.4. Compared to fixed-width bit-packing [33] which
encodes all values with the maximal width, descending bit-packing
never uses more bits.

Compared to fixed-width bit-packing, when all values have the

same valid bit width, both encodings waste no bits. In fact, the

superiority of our encoding shows with value skewness. Extremely,

if a large value is followed by many zeros, our method only uses

2 ·width(v[0]) bits but fix-width method uses𝑀 ·width(v[0]) bits,
which leads to𝑀/2× better space efficiency.

Algorithm 2: ValueEncode(v, 𝑀)
Data: value sequence v, sequence length𝑀

1 𝑊𝑣 ← width(v[0]);
2 Encode𝑊𝑣 with 8 bits;

3 for 𝑖 = 0→ 𝑀 − 1 do
4 Encode v[i] with𝑊𝑣 bits;

5 𝑊𝑣 ← width(v[i]);

Example 2.5. Suppose 𝑀 = 8, we have a value sequence v =

{147, 4, 4, 1, 1, 1, 1, 1}. First, we encode𝑊𝑣 = width(147) = 8 with

8 bits as 00001000. Then, we encode each value sequentially as



Table 1: Example of encoding and decoding

𝑖 z[i] z[i] in binary v[i] v[i] in binary

0 0 0000 147 10010011
1 1 0001 4 00000100
2 11 1011 4 100
3 2 0010 1 001
4 12 1100 1 1
5 4 0100 1 1
6 3 0011 1 1
7 10 1010 1 1

shown in Table 1 using 26 bits. The valid bits of each value are

underlined. Compared to fixed-width bit-packing strategy which

needs 8 × 8 = 64 bits, more than half bits are saved.

Connecting the above binary bits, the value sequence is finally en-

coded. It is encoded with 34 bits as 00001000 10010011 00000100
10000111 11.

2.5 Index Decoding
The index decoding is the reverse of the index encoding process in

Section 2.3, i.e., from Figure 2(h) to (e). With given𝑀 , we learn the

group partition of the index sequence. There are ⌈𝑀
8
⌉ groups. The

last group has [(𝑀 − 1) mod 8] + 1 integers while other groups
have 8 integers each. In each group, the first 𝐵 = ⌈log

2
log

2
𝑁 ⌉ bits

record the bit width𝑊𝑧 . All of the following integers are𝑊𝑧 bits

wide. Concatenating the integers of each group, the index sequence

z is recovered. The main procedure of index decoding is shown in

Algorithm 3.

Algorithm 3: IndexDecode(𝑀, 𝑁 )
Data: sequence length𝑀 , index range 𝑁

Result: index sequence z
1 𝐵 ← ⌈log

2
log

2
𝑁 ⌉;

2 𝑖 ← 0;

3 while 𝑖 < 𝑀 do
4 Decode𝑊𝑧 with 𝐵 bits;

5 for 𝑗 = 𝑖 → min(𝑀 − 1, 𝑖 + 7) do
6 Decode z[j] with𝑊𝑧 bits;

7 𝑖 ← 𝑖 + 8;
8 return z;

Example 2.6. Suppose 𝑁 = 1024 and𝑀 = 8, the encoded index

sequence is 01000000 00011011 00101100 01000011 1010. Since

⌈𝑀
8
⌉ = 1, integers all belong to the same group.

To encode the group, we first calculate 𝐵 = ⌈log
2
log

2
1024⌉ = 4.

Then, we decode the first 4 bits and get𝑊𝑧 = 4. After that, we

decode for 8 times and 4 bits each as shown in Table 1. Finally, the

index sequence is decoded as z = {0, 1, 11, 2, 12, 4, 3, 10}.

2.6 Value Decoding
Likewise, the value decoding converts the encoded value sequence

in Figure 2(i) back to the value sequence v in (f). First, we decode
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Figure 4: Performance of handling updates

𝑊𝑣 from the binary stream. With bit width𝑊𝑣 , the first integer v[0]
is decoded. After that, each integer is decoded with the valid bit

width of the previous one. Algorithm 4 shows the main procedure

of value decoding.

Algorithm 4: ValueDecode(𝑀)
Data: sequence length𝑀

Result: decoded value sequence v
1 Decode𝑊𝑣 with 8 bits;

2 for 𝑖 = 0→ 𝑀 − 1 do
3 Decode v[i] with𝑊𝑣 bits;

4 𝑊𝑣 ← width(v[i]);
5 return v;

Example 2.7. Suppose 𝑀 = 8, the encoded value sequence is

00001000 10010011 00000100 10000111 11. First,𝑊𝑣 = 8 is

decoded from 00001000. Then, we decode each value sequentially

as shown in Table 1. Finally, the value sequence is decoded as

v = {147, 4, 4, 1, 1, 1, 1, 1}.

3 DEPLOYMENT IN APACHE IOTDB
3.1 Frequency Domain Data Encoding
For the time series stored in Apache IoTDB, we use User Defined

Function (UDF) [6] to transform it to frequency domain. The fre-

quency domain data is also represented as a time series although

its timestamps are just a reuse for time domain. Based on the query

write-back mechanism of Apache IoTDB, we can directly calculate

and store the frequency domain data with SQL sentences. The fre-

quency domain data is encoded by the approach in Section 2 named

DESCEND. The deployment details are shown in [7].

3.2 Updates and Deletes
In real-world use cases, it is common for lots of time series data to

have updates and deletes. For instance, according to our preliminary

study [45] in a wind turbine manufacturer, GoldWind, the values

could be occasionally misplaced in wrong series during device

maintenance, e.g., the year value 2017 is misplaced in the time

series of wind speed. Such errors seriously mislead the data science

tasks [39], such as ice forecast of wind turbines in wind farms, thus

need to be detected [37] and then either repaired or deleted.

In Apache IoTDB, where our proposal is in use, a Log-Structured

Merge-Tree (LSM-Tree) [36] is employed to store time series data

with immutable TsFiles. The updates and deletes are recorded as



Table 2: Dataset

Name Data Size Description

TEMP 171,012 Air temperatures of a wind farm

PV 44,642,859 Voltage of a PV inverter [14]

POWER 2,049,280 Household global active power [1]

GAS 4,178,504 Readings of chemical sensor [28]

HHAR 13,062,475 Smartphone accelerometer samples [44]

GPS 263,718 GPS trajectory of seabirds [12]

ECG 2,415,755 Electrocardiogram (ECG) data [13]

AUDIO 661,500 Acoustic guitar music [8]

NOISE 1,048,576 Synthetic white noise

COSINE 1,048,576 Synthetic cosine signal

mods files [3] auxiliary to TsFile. Likewise, we also use mods files

to record the modifications of the frequency domain data (owing

to updates and deletes in time domain). Note that the Fourier trans-

form is conducted independently in each window. When the time

domain data is deleted or updated, we recalculate the frequency

domain of this window and record only the changed components.

Figure 4 presents the space and time costs of handling updates

over the TEMP dataset provided by the aforesaid GoldWind. Since

the frequency domain is quantized, as illustrated in Figure 1(b), most

changes are below the quantization threshold and have no need to

record. That is, the modifications are very small compared to the

original frequency domain data in Figure 4, while the corresponding

time costs are also much lower. It is not surprising that the space

costs increase to record more updates.

3.3 Late Arriving Data
According to our statistics [30] in real-world IoT scenarios, only

0.0375% of data points are delayed and the average delayed time is

2.49s. However, in some cases, the data could be seriously delayed.

For instance, in the aforesaid wind farm scenario of GoldWind,

data arrivals could be delayed for hours during device maintenance.

Even worse, when the protocol of a wind turbine is upgraded, the

data center may not be able to parse the data for months and ingest

them in databases till the next protocol synchronization.

For the points with short delay, Apache IoTDB uses a MemTable

to cache the data points and then reorders them by timestamps

when flushing to disks. In this case, FFT is conducted over the

reordered time series, no longer with late arriving data.

For the points with long delay, the time series flushed to disks are

incomplete. FFT needs full knowledge of all the data in a window

before it can be encoded. In this sense, we can detect [25] and

impute [48] the missing values in time series before FFT. When the

delayed data points finally arrive, they are treated as updates of the

previously imputed values. The corresponding frequency domain

data will be updated accordingly as aforesaid.

4 EXPERIMENTAL EVALUATION
4.1 Experiment Setup
4.1.1 Algorithm. For frequency domain data encoding, we com-

pare our proposed encoding method Descend in Section 2 with
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Figure 5: Performance of frequency domain data encoding

Gorilla [38], TS_2DIFF [32] and RLE [20]. These methods are all

lossless and implemented in Apache IoTDB.

4.1.2 Dataset. In the experimental evaluation, we use 8 real datasets

and 2 synthetic datasets among various types. Their data sizes and

descriptions are shown in Table 2.

4.1.3 Environment. The evaluations are made via Java native API

with tablet size 8192. The physical machine for all experiments is a

PC with an Intel(R) Core(TM) i7-9700 CPU and 16 GB RAM.

4.1.4 Evaluation Metric. To evaluate the space efficiency of encod-

ings, compression ratio, the ratio of space occupied before and after

encoding, is used as a metric. For comparison, each value is saved

as a 64-bit DOUBLE before encoding.

As for time efficiency, we consider encoding throughput, i.e., the

number of data points that could be encoded per second. Indeed,

our proposed technique only needs to know the set of values in a

window for FFT, i.e., high throughput of encoding.

4.2 Frequency Domain Data Encoding
4.2.1 Overall Performance. As shown in Section 3.1, frequency

domain data in the experiments is constructed via UDF STFT. Time
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Figure 6: Performance with varying skewness

series is stored in Apache IoTDB in advance. We set the window

size as 1024 and 𝛽 = 0 manually for each dataset.

Figure 5 shows the performance of frequency domain encoding

with various methods over different datasets. For space efficiency,

in most datasets, Descend achieves the highest compression ratio

because it captures the sparse feature of frequency domain data

and utilizes the value skewness further. It performs badly in NOISE

because the energy of white noise distributes uniformly on the

entire spectrum, violating the assumption of sparsity. Besides, RLE
also benefits from sparsity. However, the basic intuition of Gorilla
and TS_2DIFF is flat data change, which is not suitable in frequency

domain data leading to worst performance.

As for time efficiency, Descend has higher encoding throughput

than other algorithms in most datasets since the encoded binary is

smaller. For decoding, Gorilla utilizes high-speed bit operations

to achieve a much higher throughput. However, encoding and de-

coding are steps with a small proportion during write and query in

the database, leading to insignificant user-perceivable influence.

4.2.2 Varying Skewness. As introduced in Section 1.1, the extremely

skewed distribution is one of the motivations in this study. Intu-

itively, if the frequency domain data is more skewed, the values

as well as the corresponding bit widths will descend more quickly,

leading to better compression performance. Therefore, we introduce

skewness [11] of the frequency components as a feature, to show

better the applicable scenarios and limitations of our Descend. To
prepare the skewed datasets, we randomly generate the amplitude

of each frequency component under a certain skewness. Then, these

components are superimposed to obtain time domain data. Figure

6(b) shows the time domains of two representative datasets, with

low skewness 0 and high skewness 30. Their frequency domains

are shown in Figure 6(c) and (d), respectively. After generating the

datasets, we quantize the frequency domain with 𝑇SNR = 40𝑑𝐵 and
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Figure 7: NRMSE in time domain under various quantization

apply various encoding methods. Figure 6(a) shows the compres-

sion ratio of different encodings over the datasets with varying

skewness.

First, referring to the aforesaid intuition, it is not surprising that

Descend works better with higher skewness. Existing encoding,

such as RLE, works better with repeated values, which unfortu-

nately are barely observed, e.g., in Figures 6(c) or (d). Nevertheless,

with higher skewness, more components are quantized to 0 by our

proposal in Figure 6(d) and have no need to store. Thereby, all the

alternatives including RLE benefit from quantization.

On the contrary, Descend performs worse when skewness is

extremely low, e.g., 0 in Figure 6(c). In this case, the ordered values

decrease slightly in bit-width, while the auxiliary index incurs extra

space cost. Alternatives, such as RLE relying on repeated values,

are not affected much and show better results than our proposal.

Nevertheless, it is the case of pure noises, as illustrated in Figures

6(b) and (c), often useless in real applications.

4.2.3 Varying Quantization. Note that the precision of values is

usually different in various datasets. It needs huge effort to manu-

ally specify 𝛽 the precision to quantize for each dataset individually

as in [34]. To illustrate such differences among different datasets,

we consider the loss of quantization. For a series x in time domain,

let x′ be the corresponding series by transforming x to the fre-

quency domain y with quantization and transforming y back to

time domain, as the process illustrated in Figure 2. The smaller the

NRMSE between x and x′ is, the more close the series is before

and after quantization, i.e., less loss. Figure 7 illustrates the NRMSE

under various quantization parameters 𝛽 and 𝑇SNR.

As shown in Figure 7(a), the same 𝛽 leads to different NRMSE in

various datasets with distinct data precision, i.e., various quantiza-

tion loss. In contrast, the NRMSE of different datasets are almost

the same for a certain 𝑇SNR, in Figure 7(b). The reason is that 𝑇SNR
on signal-noise-ratio only filters those components of noises and

leads to consistent quantization loss. In this sense, consistently

setting the threshold 𝑇SNR for various datasets is much easier than

manually specifying 𝛽 individually for each dataset as in [34].

Rather than using all the FFT coefficients for storage, our pro-

posal also considers only very few coefficients. As the example

illustrated in Figure 1(b), the quantization reserves only those with

amplitude higher than the threshold in the red line. To compare

compression performance with Buff [34], since it is difficult to

manually specify the quantization level 𝛽 for various datasets as

aforesaid, we use the 𝛽 derived by 𝑇SNR for Buff as well, i.e., the
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Figure 8: Evaluation on alternative options

FFT coefficients are the same between Buff and our proposal. Fig-

ure 5 shows that our Descend has better compression ratio than

Buff. The reason is that Buff considers only the redundancy in

bytes, while our proposal reduces the bit-width for each value in a

fine-grained granularity.

4.2.4 Alternative Options. Figure 8(a) reports the compression ratio

of two different choices in the design of encoding, over the TEMP

dataset. As shown, under various quantization threshold 𝑇SNR, the

descending bit-packing Descend occupies space no higher than the

fixed width bit encoding Fixed. The results are consistent with the

analysis in Proposition 2.4. The benefit of Descend is to dynamically

reduce the bit-width with the descent of values, as illustrated in

Table 1 in Example 2.5, more efficient than Fixed in bit-width.

Figure 8(a) also presents the compression ratio of different choices

in the design of quantization, where the quantization threshold

𝑇SNR = ∞ denotes no quantization applied. The smaller the thresh-

old 𝑇SNR is, corresponding to a higher red line in Figure 8(b), the

more the FFT coefficients are quantized to zero and thus have no

need to record, i.e., better compression ratio. Of course, as the de-

crease of𝑇SNR in Figure 7(b), the corresponding loss in time domain

(cons) increases with the decrease of space cost (pros), a trade-off.

As the skewed data distribution illustrated in Figure 8(b), when

𝑇SNR is large, corresponding to the lower green line, more values

without much differences are under consideration (above the green

line). The decrease of bit-width by Descend is thus limited, with

compression ratio close to Fixed bit-width in Figure 8(a). On the

other hand, for more efficient quantization with smaller 𝑇SNR, the

values, e.g., above the red line in Figure 8(b), have more significant

differences. It is the case where Descend performs better, and thus

shows more clear improvement compared to Fixed in Figure 8(a).

In this sense, descending bit encoding (Descend) combined with the

more efficient quantization (smaller 𝑇SNR) indeed leads to a clearly

better solution compared to the Fixed width bit encoding.

4.2.5 Complement with Compression Techniques. Similar to the

JPEG approach [46] to image encoding, an additional lossless com-

pression can also be applied to the output stream of Descend. In
this sense, our proposal of quantization and encoding is comple-

mentary to the compression techniques, such as GZIP [9], LZ4 [23],

SNAPPY [2], Arithmetic [40], etc.

Figure 9 presents the results of Descendwith/without additional
compression, over the TEMP dataset. As shown, various compres-

sion techniques further improve more or less the compression ratio
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Figure 9: Complement with compression techniques

in Figure 9(a), with some extra cost in compression/decompression

speed in Figure 9(b), again a trade-off. In Apache IoTDB, users

can choose whether or not to apply additional compression after

encoding, declared by SQL.

4.3 Application in Data Science
Frequency domain is widely used in time series data science tasks.

The proposed compressionmethod does not only reduce the storage

but also improves the efficiency of data analytics tasks without

sacrificing effectiveness.

4.3.1 Similarity Search. To search similar time series, [15] proposes

to compute the Euclidean distance on the amplitude of Fourier

coefficients. In the similarity search evaluation, we extract 100 time

series from each dataset as the data source, and sample some as

the queries to search the nearest neighbors from the source. For

online-computing, we conduct FFT online and search the nearest

neighbors as the ground truths (with accuracy 1). For compressed-

store, the Fourier coefficients are encoded and stored in advance,

and thus the query only needs to decode them instead of conducting

FFT. Since there is a quantization in encoding, the decoded Fourier

coefficients are different from the origin and may lead to different

query results. We evaluate the accuracy by comparing them with

those returned by online-computing.

Figure 10 shows the accuracy and time cost of similarity search

by varying 𝑇SNR of quantization. The accuracy increases with the

increase of𝑇SNR, i.e., more Fourier coefficients are reserved in quan-

tization. The corresponding time cost is of course higher. Neverthe-

less, with 𝑇SNR ≥ 40𝑑𝐵, the accuracy is close to 1. Meanwhile, the

time cost is only about half of the online-computing. It illustrates

that frequency domain data encoding with proper quantization can

significantly reduce the time cost without losing much accuracy of

time series similarity search.

4.3.2 Clustering. Frequency domain features are also used in clus-

tering [27]. Similar to Section 4.3.1, we consider time series from

each dataset as a class. The K-Means++ clustering [17] is conducted,

using the Euclidean distance on the amplitude of Fourier coeffi-

cients. Again, the online-computing conducts FFT online for clus-

tering, while the compressed-store only needs to decode the stored

Fourier coefficients with quantization.

Figure 11 shows the purity performance of clustering with differ-

ent𝑇SNR of quantization. As shown, the results are generally similar

to similarity search in Figure 10, i.e., significantly improving the

efficiency but not losing much effectiveness with proper quantiza-

tion. Note that with 𝑇SNR ≥ 20𝑑𝐵, the purity of compression-store
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Figure 10: Application in similarity search
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Figure 12: Application in forecasting

is already close to online-computing. The reason is that finding rel-

atively similar series is sufficient for clustering, while the similarity

search needs to return the most similar one with less tolerance to

noises, requiring a larger 𝑇SNR.

4.3.3 Forecasting. Frequency domain also helps in forecasting ap-

plications [18]. It builds ARIMA models on Fourier coefficients to

forecast those in the next period and thus the time domain. The

evaluation is conducted on the TEMP dataset with a period of 24

hours. We forecast the temperatures the next day with the data of

the past 14 days. RMSE between the forecast and the real observa-

tion is used as a metric. Similar to Section 4.3.1, we also compare

the performance between online-computing of all coefficients and

compressed-store with quantized ones.

Figure 12 shows RMSE and time cost of forecasting. The results

are similar to those in similarity search and clustering. That is, with

proper quantization, e.g., 𝑇SNR = 40𝑑𝐵, decoding the frequency

domain data in compressed-store has almost the same forecasting

RMSE as online-computing, but with a much lower time cost.

5 RELATEDWORK
5.1 Bit-Packing
Bit-packing is a widely used technique in encoding integers. For an

integer, the bits of its binary representation except leading zeros are

called valid bits. The core idea of bit-packing is to drop the leading

zeros of an integer and save only the valid bits. A selector is used

to indicate the encoding bit width of the following values. Some

works encode a fixed-size block in a time and specify the encoding

bit width as the maximal of valid bit widths of the block [33, 49].

To avoid the influence of some extremely large values, some works

store them independently and bit-pack the other values [41, 43].

However, bit-packing meets challenges in the trade-off of block size.

Small block size attenuates the effect of large values [19], but leads

to more selectors, while large block size is the opposite. In this field,

Simple8b [16] is a brilliant implementation which applies different

block sizes for different encoding bit widths. Different from the

above works, our descending bit-packing assigns unique bit width

for each value implicitly without selectors.

5.2 Sketch-based Representation
The concept of quantization is similar to the idea of sketch, as a

compressed lossy representation for a specific problem at hand. For

instance, HyperLogLog [26] uses random binning via hash func-

tion to estimate the number of distinct values. As illustrated in

Figure 1(b), most values become zero after quantization and are

thus efficient in storage, but do not help in counting distinct values,

and vice versa. Moreover, T-Digest [24] uses an uneven binning for

percentiles estimation due to a prior that the accuracy at extremes

is more important. However, this prior is not suitable for our en-

coding because all non-zero values are equivalently important for

frequency domain data and need to be encoded.

5.3 Time Series Compression
Chiarot and Silvestri [22] present a survey of time series compres-

sion techniques. It covers a broad range of approaches in several

categories, such as dictionary-based methods, functional approxi-

mations, auto-encoders and sequential algorithms. The frequency

domain encoding, considered in our study, however, is not dis-

cussed. LFZip [21] uses a fixed 16-bit quantization. In contrast, we

use a quantization level that can be easily adjusted referring to

SNR. Moreover, the bit-width of each value is not fixed either, but

descends with the decrease of values, for more efficient space.

6 CONCLUSION
In this paper, we first identify the unique features in encoding

frequency domain data, i.e., high precision and skewed distribution.

To address the identified precision and skewness issues, we propose

to determine the quantization level by signal-noise-ratio (SNR)

and order the values such that the bit-width descends in encoding.

We deploy the proposed encoding in Apache IoTDB and apply to

several data science tasks. The superiority of our proposal is shown

by extensive experiments.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science Foun-

dation of China (62072265, 62232005, 62021002), the National Key

Research andDevelopment Plan (2021YFB3300500, 2019YFB1705301,

2019YFB1707001), Beijing National Research Center for Information

Science and Technology (BNR2022RC01011), and Alibaba Group

through Alibaba Innovative Research (AIR) Program. Shaoxu Song

(https://sxsong.github.io/) is the corresponding author.



REFERENCES
[1] http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+

consumption.

[2] http://google.github.io/snappy/.

[3] https://cwiki.apache.org/confluence/display/IOTDB/Data+Manipulation.

[4] https://github.com/543202718/iotdb/tree/research/descend.

[5] https://iotdb.apache.org/.

[6] https://iotdb.apache.org/UserGuide/Master/Process-Data/UDF-User-Defined-

Function.html.

[7] https://sxsong.github.io/doc/frequency.pdf.

[8] https://ww2.mathworks.cn/help/signal/ug/practical-introduction-to-

frequency-domain-analysis.html.

[9] https://www.gzip.org/.

[10] https://www.influxdata.com/.

[11] https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm.

[12] https://www.kaggle.com/datasets/saurabhshahane/predicting-animal-

behavior-using-gps.

[13] https://www.kaggle.com/datasets/shayanfazeli/heartbeat.

[14] https://zenodo.org/record/4467774#.Yj1yWtBByUk.

[15] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in se-

quence databases. In D. B. Lomet, editor, Foundations of Data Organization and
Algorithms, 4th International Conference, FODO’93, Chicago, Illinois, USA, October
13-15, 1993, Proceedings, volume 730 of Lecture Notes in Computer Science, pages
69–84. Springer, 1993.

[16] V. N. Anh and A. Moffat. Index compression using 64-bit words. Softw. Pract.
Exp., 40(2):131–147, 2010.

[17] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.

In N. Bansal, K. Pruhs, and C. Stein, editors, Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pages 1027–1035. SIAM, 2007.

[18] M. Beiraghi and A. Ranjbar. Discrete fourier transform based approach to forecast

monthly peak load. In 2011 Asia-Pacific Power and Energy Engineering Conference,
pages 1–5. IEEE, 2011.

[19] D. W. Blalock, S. Madden, and J. V. Guttag. Sprintz: Time series compression for

the internet of things. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
2(3):93:1–93:23, 2018.

[20] J. Capon. A probabilistic model for run-length coding of pictures. IRE Trans. Inf.
Theory, 5(4):157–163, 1959.

[21] S. Chandak, K. Tatwawadi, C. Wen, L. Wang, J. A. Ojea, and T. Weissman. Lfzip:

Lossy compression of multivariate floating-point time series data via improved

prediction. In A. Bilgin, M.W. Marcellin, J. Serra-Sagristà, and J. A. Storer, editors,

Data Compression Conference, DCC 2020, Snowbird, UT, USA, March 24-27, 2020,
pages 342–351. IEEE, 2020.

[22] G. Chiarot and C. Silvestri. Time series compression: a survey. CoRR,
abs/2101.08784, 2021.

[23] Y. Collet et al. Lz4: Extremely fast compression algorithm. code. google. com,

2013.

[24] T. Dunning and O. Ertl. Computing extremely accurate quantiles using t-digests.

CoRR, abs/1902.04023, 2019.
[25] C. Fang, S. Song, and Y. Mei. On repairing timestamps for regular interval time

series. Proc. VLDB Endow., 15(9):1848–1860, 2022.
[26] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis

of a near-optimal cardinality estimation algorithm. In Discrete Mathematics
and Theoretical Computer Science, pages 137–156. Discrete Mathematics and

Theoretical Computer Science, 2007.

[27] K. Fokianos and V. J. Promponas. Biological applications of time series frequency

domain clustering. Journal of Time Series Analysis, 33(5):744–756, 2012.
[28] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco. Reservoir computing compensates

slow response of chemosensor arrays exposed to fast varying gas concentrations

in continuous monitoring. Sensors and Actuators B: Chemical, 215:618–629, 2015.

[29] D. Galar and U. Kumar. Chapter 3 - preprocessing and features. In D. Galar and

U. Kumar, editors, eMaintenance, pages 129–177. Academic Press, 2017.

[30] Y. Kang, X. Huang, S. Song, L. Zhang, J. Qiao, C. Wang, J. Wang, and J. Feinauer.

Separation or not: On handing out-of-order time-series data in leveled lsm-tree.

In 38th IEEE International Conference on Data Engineering, ICDE 2022, (Virtual)
Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 2022.

[31] S. Khalid. Introduction to data compression. 2009.
[32] S. T. Klein and M. Meir. Delta encoding in a compressed domain. In J. Holub and

J. Zdárek, editors, Proceedings of the Prague Stringology Conference 2009, Prague,
Czech Republic, August 31 - September 2, 2009, pages 55–64. Prague Stringology
Club, Department of Computer Science and Engineering, Faculty of Electrical

Engineering, Czech Technical University in Prague, 2009.

[33] D. Lemire and L. Boytsov. Decoding billions of integers per second through

vectorization. Softw. Pract. Exp., 45(1):1–29, 2015.
[34] C. Liu, H. Jiang, J. Paparrizos, and A. J. Elmore. Decomposed bounded floats for

fast compression and queries. Proc. VLDB Endow., 14(11):2586–2598, 2021.
[35] K. Murakawa, N. Hirasawa, H. Ito, and Y. Ogura. Electromagnetic interference

examples of telecommunications system in the frequency range from 2khz to

150khz. In 2014 International Symposium on Electromagnetic Compatibility, Tokyo,
pages 581–584. IEEE, 2014.

[36] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree

(lsm-tree). Acta Informatica, 33(4):351–385, 1996.
[37] D. P and S. S. Abraham. Fairlof: Fairness in outlier detection. Data Sci. Eng.,

6(4):485–499, 2021.

[38] T. Pelkonen, S. Franklin, P. Cavallaro, Q. Huang, J. Meza, J. Teller, and K. Veer-

araghavan. Gorilla: A fast, scalable, in-memory time series database. Proc. VLDB
Endow., 8(12):1816–1827, 2015.

[39] Z. Qi, H.Wang, andA.Wang. Impacts of dirty data on classification and clustering

models: An experimental evaluation. J. Comput. Sci. Technol., 36(4):806–821, 2021.
[40] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of research and

development, 23(2):149–162, 1979.
[41] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer compression using SIMD

instructions. In A. Ailamaki and P. A. Boncz, editors, Proceedings of the Sixth
International Workshop on Data Management on New Hardware, DaMoN 2010,
Indianapolis, IN, USA, June 7, 2010, pages 34–40. ACM, 2010.

[42] K. Schwarz, M. Sideris, and R. Forsberg. The use of fft techniques in physical

geodesy. Geophysical Journal International, 100(3):485–514, 1990.
[43] J. Shieh and E. J. Keogh. isax: disk-aware mining and indexing of massive time

series datasets. Data Min. Knowl. Discov., 19(1):24–57, 2009.
[44] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. K.

Dey, T. Sonne, and M. M. Jensen. Smart devices are different: Assessing and

mitigatingmobile sensing heterogeneities for activity recognition. In J. Song, T. F.

Abdelzaher, and C. Mascolo, editors, Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, SenSys 2015, Seoul, South Korea, November
1-4, 2015, pages 127–140. ACM, 2015.

[45] Y. Sun, S. Song, C. Wang, and J. Wang. Swapping repair for misplaced attribute

values. In 36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020, pages 721–732. IEEE, 2020.

[46] A. Tinku and T. Ping-Sing. Jpeg–still image compression standard. JPEG2000
Standard for Image Compression, pages 55–78, 2005.

[47] I. Trendafilova, M. P. Cartmell, and W. Ostachowicz. Vibration-based damage

detection in an aircraft wing scaled model using principal component analysis

and pattern recognition. Journal of Sound and Vibration, 313(3-5):560–566, 2008.
[48] A. Zhang, S. Song, Y. Sun, and J.Wang. Learning individual models for imputation.

In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019, pages 160–171. IEEE, 2019.

[49] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Super-scalar RAM-CPU cache

compression. In L. Liu, A. Reuter, K. Whang, and J. Zhang, editors, Proceedings
of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA, page 59. IEEE Computer Society, 2006.

http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://google.github.io/snappy/
https://cwiki.apache.org/confluence/display/IOTDB/Data+Manipulation
https://github.com/543202718/iotdb/tree/research/descend
https://iotdb.apache.org/
https://iotdb.apache.org/UserGuide/Master/Process-Data/UDF-User-Defined-Function.html
https://iotdb.apache.org/UserGuide/Master/Process-Data/UDF-User-Defined-Function.html
https://sxsong.github.io/doc/frequency.pdf
https://ww2.mathworks.cn/help/signal/ug/practical-introduction-to-frequency-domain-analysis.html
https://ww2.mathworks.cn/help/signal/ug/practical-introduction-to-frequency-domain-analysis.html
https://www.gzip.org/
https://www.influxdata.com/
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.kaggle.com/datasets/saurabhshahane/predicting-animal-behavior-using-gps
https://www.kaggle.com/datasets/saurabhshahane/predicting-animal-behavior-using-gps
https://www.kaggle.com/datasets/shayanfazeli/heartbeat
https://zenodo.org/record/4467774#.Yj1yWtBByUk

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Intuition
	1.3 Contributions

	2 Frequency Domain Data Encoding
	2.1 Overview
	2.2 Quantization
	2.3 Index Encoding
	2.4 Value Encoding
	2.5 Index Decoding
	2.6 Value Decoding

	3 Deployment in Apache IoTDB
	3.1 Frequency Domain Data Encoding
	3.2 Updates and Deletes
	3.3 Late Arriving Data

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Frequency Domain Data Encoding
	4.3 Application in Data Science

	5 Related Work
	5.1 Bit-Packing
	5.2 Sketch-based Representation
	5.3 Time Series Compression

	6 Conclusion
	Acknowledgments
	References

