
Frequency Domain Data Encoding
in Apache IoTDB

Haoyu Wang, Shaoxu Song

BNRist, Tsinghua University

Proceedings of the VLDB Endowment, PVLDB 16 (2022)

Background
n With the rapid development of IIoT, a lot of time series data is produced and stored in

time-series databases.

n Frequency domain analysis is widespread in analyzing time series data.

p Period discovery: finding the period with the index of peaks in the frequency domain.

2

Motivation and Problem
n The complexity of FFT is O(NlogN). While frequency domain analysis is repeatedly

conducted for various applications, online computing of time-frequency
transformation is costly due to its quasilinear time complexity.

n Intuition:

p The pre-computing and storage of frequency domain data is significant.

n Problem:

p How to encode and store the frequency domain data in time-series databases?

3

Challenge
n How to encode and store the frequency domain data in time-series databases?

p A plain encoding as IEEE 754 floating-point data is not realistic due to the large
space cost.

p There is no existing work target on frequency domain data encoding.

p Most time-series databases, such as Apache IoTDB or InfluxDB, do not directly
support efficient storage of the frequency domain data for reuse.

4

Contribution
n We observe the skewed distribution of frequency domain data, and significantly reduce the

number of non-zero coefficients by quantization. While the quantization level needs to be
determined individually for different datasets due to their distinct value precision, we propose to
use SNR to automatically derive the quantization level.

n We propose to order the values after quantization such that the number of bits to represent
each non-zero coefficient decreases with the descent of values. The more the data
distribution is skewed, the faster the bit-width decreases, leading to lower space cost.

n We may apply additional compression to the output stream of encoding, to further reduce
the space cost with some extra cost in compression/decompression speed. Our proposal has been
in use in Apache IoTDB, an open-source time-series database.

n We report an extensive experimental evaluation on the system. The results illustrate the
superiority of our proposal in encoding frequency domain data.

5

Data Feature of Frequency Domain
n Unnecessarily high precision
p Such high precision is not necessary for analysis.

n Extremely skewed distribution
p The skewness leads to a serious bit waste if all values are encoded with the

same width.
y[0]=73.4886113281250…
y[1]=1.86352736056101…
y[2]=0.700581753631760…
y[3]=0.590147317780781…
y[4]=0.602915456564395…
y[5]=0.182843351988000…
y[6]=0.117359057048072…
y[7]=0.151711502880389…
y[8]=0.0720156288113422…
y[9]=0.166983324499835…
…

6

Solution
n Unnecessarily high precision => Quantization
p Quantization is used to reduce to a proper precision. After that, frequency domain

is sparse because most components are quantized to 0.

n Extremely skewed distribution => Descending bit-packing
p Descending Bit-packing implicitly specifies unique encoding bit width for each value.

y[0]=73.4886113281250… => 73.5
y[1]=1.86352736056101… => 2.0
y[2]=0.700581753631760… => 0.5
y[3]=0.590147317780781… => 0.5
y[4]=0.602915456564395… => 0.5
y[5]=0.182843351988000… => 0.0
y[6]=0.117359057048072… => 0.0
y[7]=0.151711502880389… => 0.0
y[8]=0.0720156288113422… => 0.0
y[9]=0.166983324499835… => 0.0
…

7

Overview (Quantization & Reorder)

8

y[0]=73.489...
y[1]=1.864...
y[2]=0.701...
y[3]=0.590...
y[4]=0.603...

...
y[10]=0.567...
y[11]=1.719...
y[12]=0.676...

...
y[1023]=0.000...

y[0]=1001001.0111...
y[1]=1.1101...

y[11]=1.1011...
y[2]=0.1011...

y[12]=0.1010...
y[4]=0.1001...
y[3]=0.1001...

y[10]=0.1001...
y[5]=0.0011...
y[6]=0.0010...
...

Descending
order

Natural order

x[0]=69.98
x[1]=69.89
x[2]=69.80
x[3]=69.71
x[4]=69.62
x[5]=69.55
x[6]=69.48
x[7]=69.40
x[8]=69.33

...
x[1023]=82.14

(a) Time
Domain

(b) Frequency
Domain

(c) Ordered Frequency
Domain in Binary

Quantization with
level β=-1

DFT/DCT/...

IDFT/IDCT/...

Sperate

Combine

Overview (Encoding & Decoding)

9

Encode

Decode

Encode

Decode

(e) Index Sequence
z={0,1,11,2,12,4,3,10}

Encode

Decode

Wv

8 bits

v[0]

Wv bits

v[1]

width(v[0]) bits

v[2]

width(v[1]) bits

...

N M β

32bits 32bits 32 bits

Wz z[0] z[1] ... z[7]

B bits Wz bits Wz bits Wz bits

Group 1 Group 2

Group 0

...

(g) Encoded Header

(h) Encoded Index Sequence

(i) Encoded Value Sequence
(f) Value Sequence

v={147,4,4,1,1,1,1,1}

(d) Header
N=1024, M=8, β=-1

Quantization
n Quantization reduces the precision and bit width at once.

n Manually specifying quantization level
p Quantizatoin level β specifies the place of precision in binary.
ØNegative for the reserved bits after the radix point
ØPositive for the discarded bits before the radix point
ØEncoding: y[i] is quantized to integer round(y[i]·2-β）
ØDecoding: the integer is recoved by multiplying 2β

p Bit operation is used to speed up.

p Without knowing the data distribution, manually specifying β could be difficult.

0100 0000 0101 0010 0101 1111 0100 0101 0110 1000 0111 0010 1011 0001 0110 0010

 1 0010 010

S Exp=6 Fraction, reserving the first Exp-β=6-(-1)=7 bits

y[0]=1001001.0111...
y[1]=1.1101...
y[11]=1.1011...
y[2]=0.1011...
y[12]=0.1010...
y[4]=0.1001...
y[3]=0.1001...
y[10]=0.1001...
y[5]=0.0011...
y[6]=0.0010...
...

Quantization
with level β=1

10

Automatically Determining with SNR
n Automatically determining

quantization level with SNR

p Regarding the difference before
and after quantization as noise,
SNR is the ratio of the energy
of original data and noise

ØEnergy is the square sum of all
elements in the sequence.

ØLogarithmic scale is often
used for SNR with the unit dB.

11

Automatically Determining with SNR
n Automatically determining quantization level with SNR
p Intuition: find a maximum β whose actual SNR is not

lower than target SNR TSNR.

p Operation:
ØSet β initially as

ØKeep increasing β until the actual SNR is lower than TSNR

12

Definition of SNR

Overview (Encoding & Decoding)

13

Encode

Decode

Encode

Decode

Wv

8 bits

v[0]

Wv bits

v[1]

width(v[0]) bits

v[2]

width(v[1]) bits

...

N M β

32bits 32bits 32 bits

(g) Encoded Header

(i) Encoded Value Sequence
(f) Value Sequence

v={147,4,4,1,1,1,1,1}

(d) Header
N=1024, M=8, β=-1

Encode

Decode

(e) Index Sequence
z={0,1,11,2,12,4,3,10} Wz z[0] z[1] ... z[7]

B bits Wz bits Wz bits Wz bits

Group 1 Group 2

Group 0

...
(h) Encoded Index Sequence

Index Encoding: Fixed-Width Bit-Packing
n Every 8 indexes are grouped together and encoded with WZ bits. WZ is the max bit

width of all indexes in the group.

p Because the maximum of index is N-1, WZ is encoded with bits

n Example:

p Since the data length is N=1024, we have B=4

p The max of indexes is z[4]=12, leading to WZ=4

p Thus, WZ=4 is encoded as 0100 with B=4 bits

B: encoding bit
width of WZ

WZ: encoding bit
width of indexes

14

Encode

Decode

(e) Index Sequence
z={0,1,11,2,12,4,3,10} Wz z[0] z[1] ... z[7]

B bits Wz bits Wz bits Wz bits

Group 1 Group 2

Group 0

...
(h) Encoded Index Sequence

Overview (Encoding & Decoding)

15

Encode

Decode

Encode

Decode

Wv

8 bits

v[0]

Wv bits

v[1]

width(v[0]) bits

v[2]

width(v[1]) bits

...

N M β

32bits 32bits 32 bits

(g) Encoded Header

(i) Encoded Value Sequence
(f) Value Sequence

v={147,4,4,1,1,1,1,1}

(d) Header
N=1024, M=8, β=-1

Encode

Decode

(e) Index Sequence
z={0,1,11,2,12,4,3,10} Wz z[0] z[1] ... z[7]

B bits Wz bits Wz bits Wz bits

Group 1 Group 2

Group 0

...
(h) Encoded Index Sequence

Value Encoding: Descending Bit-Packing
n The encoded bit width of a value is the valid bit width of the previous value.
p Descending order => the bit width is never larger than the previous one

n Example:

p The valid bit width of the first value v[0]=147 is WV=8

p v[0]=147 is encoded as 10010011 with WV=8 bits

p The valid bits of each value are underlined in the table

WV: encoding bit
width of the first value

16

(f) Value Sequence
v={147,4,4,1,1,1,1,1}

Encode

Decode
Wv

8 bits

v[0]

Wv bits

v[1]

width(v[0]) bits

v[2]

width(v[1]) bits

...
(i) Encoded Value Sequence

Implementation in Apache IoTDB
n In Apache IoTDB, frequency domain data has to be stored as time series
p Timestamp column: reuse the timestamps of original time domain data

p Value column: the amplitude of each frequency component

17

Implementation: SQL
n Directly storing frequency domain data in Apache IoTDB with SQL
p create timeseries root.sg1.d1.fd with datatype = double, encoding = descend

p select STFT(td, 'nfft' = '60', 'beta' = '-1') into fd from root.sg1.d1

18

Experimental Setup
n Encoding algorithms:

p Descend
p Gorilla

p RLE

p TS_2DIFF

n Environment:

p Intel(R) Core(TM) i7-9700 CPU

p 16GB Memory

p 64-bit Windows 10 OS

Dataset Size Note

TEMP 171,012 Air temperatures of a wind farm

PV 44,642,859 Voltage of a PV inverter

POWER 2,049,280 Household global active power

GAS 4,178,504 Readings of chemical sensor

HHAR 13,062,475 Smartphone accelerometer samples

GPS 263,718 GPS trajectory of seabirds

ECG 2,415,755 Electrocardiogram (ECG) data

AUDIO 661,500 Acoustic guitar music

NOISE 1,048,576 Synthetic white noise

COSINE 1,048,576 Synthetic cosine signal

19

Overall Performance
n Descend achieves the highest compression ratio in most datasets

p In NOISE, the energy of white noise distributes uniformly on the entire spectrum,
violating the assumption of sparsity.

20

Varying Skewness
n Skewness

n Skewness improves the performance
of Descend

21

Varying Quantization
n Consistently setting the threshold TSNR for various datasets is much easier than manually

specifying β individually for each dataset.

22

Alternative Options
n Descending bit encoding combined with the more efficient quantization

leads to a clearly better solution compared to the fixed width bit encoding.

23

Complement with Compression
n Various compression techniques further improve the compression ratio with

some extra cost in compression/decompression speed.

24

Application in Data Science
n Frequency analysis is widely used in data science tasks of time series
p Online-computing: FFT online to calculate the frequency domain data for data

science tasks
p Compressed-store: directly decode the pre-stored frequency domain data for

data science tasks

Time series

Corresponding
frequency domain

online FFT

directly decode and apply

Route 2: compressed-store

Route 1: online-computing

25

apply

Apache IoTDB

Frequency domain
Data

Science
Tasks

Data Science: Similarity Search
n Similarity search:

p Compute the Euclidean distance on the amplitude of Fourier coefficients
p Return the nearest neighbor of query

n Frequency domain data encoding with proper quantization can significantly reduce the
time cost without losing much accuracy of time series similarity search.

26

Data Science: Clustering
n Clustering:

p Compute the Euclidean distance on the amplitude of Fourier coefficients
p Cluster the time series into several clusters

n Frequency domain data encoding significantly improves the efficiency but not loses
much effectiveness with proper quantization.

27

Data Science: Forecasting
n Forecasting:

p Build ARIMA models on Fourier coefficients to forecast those in the next period
and thus the time domain

n With proper quantization parameters, compressed-store has almost the same
forecasting RMSE as online-computing, but with a much lower time cost.

28

Conclusion
n We first identify the unique features in encoding frequency domain data, i.e., high

precision and skewed distribution.

n To address the identified precision and skewness issues, we propose to determine the
quantization level by signal-noise-ratio (SNR) and order the values such that the
bit-width descends in encoding.

n We deploy the proposed encoding in Apache IoTDB and apply to several data science
tasks. The superiority of our proposal is shown by extensive experiments.

29

