
The VLDB Journal
https://doi.org/10.1007/s00778-023-00796-y

REGULAR PAPER

Streaming data cleaning based on speed change

Haoyu Wang1 · Aoqian Zhang2 · Shaoxu Song3 · Jianmin Wang1

Received: 20 May 2021 / Revised: 27 September 2022 / Accepted: 9 April 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Errors are prevalent in data sequences, such as GPS trajectories or sensor readings. Existing methods on cleaning sequential
data employ a constraint on value changing speeds and perform constraint-based repairing. While such speed constraints are
effective in identifying large spike errors, the small errors that do not deviate much from the truth and indeed satisfy the
speed constraints can hardly be identified and repaired. To handle such small errors, in this paper, we propose a cleaning
method based on probability of speed change. Rather than declaring a broad constraint of max/min speeds, we model the
probability distribution of speed changes. The repairing problem is thus to maximize the probability of the sequence w.r.t.
the probability of speed changes. We formalize the probability-based repairing problem and devise algorithms in streaming
scenarios. Experiments on real data sets (in various applications) demonstrate the superiority of our proposal.

Keywords Time series · Data cleaning · Stream processing · Speed change

1 Introduction

Data sequences are often found with dirty or imprecise val-
ues, such as GPS trajectories or sensor reading sequences
[21, 34, 48], which affect downstream applications like clas-
sification [30] or traffic prediction [47]. According to the
survey [24], even the data of stock prices could be dirty. For
instance, the price of SALVEPAR (SY) is misused as the
price of SYBASE, which is denoted by SY as well in some
sources. In fact, there are two sources of outliers: some out-
liers come from the errors of measurements, which should be
repaired. Others are the part of the signalswewant to capture,
which should not be modified (see Sect. 7.5 for details).

B Shaoxu Song
sxsong@tsinghua.edu.cn

Haoyu Wang
wanghy20@mails.tsinghua.edu.cn

Aoqian Zhang
aoqian.zhang@bit.edu.cn

Jianmin Wang
jimwang@tsinghua.edu.cn

1 School of Software, Tsinghua University, Beijing, China

2 School of Computer Science and Technology, Beijing
Institute of Technology, Beijing, China

3 BNRist, School of Software, Tsinghua University, Beijing,
China

To clean dirty data, constraint-based repairing is often
employed [6]. Existing study [35] on sequential data clean-
ing considers the constraints on speeds of value changes,
namely speed constraints. For example, the speed constraints
on fuel meter values state that the fuel consumption of a
crane should not be negative and not exceed 40 ls per hour.
Constraint-based cleaning identifies the violations to such
speed constraints and (minimally) modifies the values so that
the repaired results satisfy the speed constraints. According
to the minimum change principle, constraint-based cleaning
will choose the maximum/minimum allowable values.

An alternative approach is to consider the average of the
previous values as a repair, a.k.a. smoothing methods [7, 16].
For example, the simple moving average (SMA) [7] smooths
time series data by computing the unweighted mean of the
last k points. Instead of weighting equally, the exponentially
weighted moving average (EWMA) [16] assigns exponen-
tially decreasing weights over time. As indicated in [35],
the problem of the smoothing methods is over-repairing, i.e.,
almost all the data points are modified, most of which are
indeed correct originally and do not need repair.

Moreover, the speed constraints fail to identify the small
errors that do not deviate much from the original values,
and indeed satisfy the speed constraints. The small errors are
particularly important in some applications. For instance, a
deviation of 1m in GPS readings is prevalent and small rela-
tive to 10m large spikes. Such a small error (1m), however,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00796-y&domain=pdf
https://orcid.org/0000-0002-4871-5334
https://orcid.org/0000-0003-4059-6913
http://orcid.org/0000-0002-9503-2755
https://orcid.org/0000-0001-6841-7943

H. Wang et al.

1540 1550 1560 1570 1580
Time

240

245

250

255

260

265

V
al

ue
Truth Probability Observation

... ...

Fig. 1 The challenge example of streaming repairing

is critical in car localization for automatic driving. More-
over, aggregating a large number of small errors, data mining
results could be seriously misled, e.g., unable to form mean-
ingful clusters over imprecise GPS readings with many small
errors [33]. Our results in Sect. 7.3.3 also show that repair-
ing small errors could improve the accuracy of prediction
applications.

Instead of considering the aforesaid max/min speeds, we
propose a novel repairing method based on speed change
distribution probability in the conference version [48]. How-
ever, this version only discusses repairing the sequence as
a whole. Actually, in many real scenarios, time sequence
comes as a stream. For example, online map apps show the
repaired time sequence of GPS trajectory and adjust the rec-
ommended routes in real time. Therefore, in this paper, we
extend the repairing method to the streaming scenario. Let
us first illustrate a challenge example below.

Example 1 Fig. 1 presents a period of stock prices over
streaming scenario. (1) The data points after 1574 are
unknown for our repairing because they have not come yet.
Therefore, in probability distribution construction, we can
only use the data points before 1574. (2) The local period
from1541 to 1574 (purple rectangle) is the target of repairing.
The data points before 1541 are dropped due to limitedmem-
ory. Thus, the streaming algorithms should repair locally. (3)
An out-of-order arrival is detected at 1548 (red circle). By
accident, the data point at time 1548 arrives later than the
data point at time 1549. Thus, out-of-order points should be
handled by streaming algorithms.

1.1 Challenges

Different from repairing as a whole, there are four main chal-
lenges in streaming repairing:

1. Typically, when repairing the entire sequence as a
whole, a global optimization problem is considered. How-
ever, because infinite data points come continuously in the
streaming scenario, each data point should be repaired under
a short time latencywith limited space. Therefore, algorithms
with high time and space complexity are not suitable. It is
necessary to look for heuristics, even at the price of accuracy.

2. Budget is a vital parameter when repairing as a whole to
avoid over-repairing. However, because of the infinite length
of time sequence, it is unrealistic to set the budget in stream-
ing repairing. Hence, we need to find an adaption strategy.
Based on it, some repairs will be abandoned even if the
probability increases to prevent over-repairing in streaming
repairing.

3. Probability distribution can only be constructed with
arrived data points, not all data points. Therefore, how to
construct a reliable distribution dynamically should be dis-
cussed. Meanwhile, a solution of concept shift and drift is
also needed.

4. Due to network latency, device failures or data retrans-
mission [25, 35], some of the data points may come later than
they should be. Therefore, in general, the time sequence may
be out of order. To solve this problem, streaming algorithms
should pay special attention to out-of-order points.

1.2 Contributions

Our major contributions are summarized as:
1. We formalize the repairing problem as Problem 1 and

Problem 2 based on the idea of maximum probability. Then,
we introduce the definition of probability gain and a greedy
heuristic in Sect. 4.2.

2. In Sect. 3, we propose the dynamic probability distri-
bution construction. To deal with concept shift and drift,
weighted probability construction is introduced in Sect. 3.3.

3. Budget is an important parameter in the repairing prob-
lem. In Sect. 5, we present an intuition to select the proper
budget when the probability increases much more slowly.
Based on its formalization, we introduce several budget-
adaptive algorithms.

4. Supported by the idea of probability gain and budget
adaptation, we propose several scroll algorithms in Sect. 6.1
and an incremental greedy algorithm in Sect. 6.2 to deal with
the dirty and out-of-order stream.

Finally, we report an extensive experimental evaluation
in Sect. 7. The results illustrate that our proposal achieves
better performance for streaming repairing. Table 1 lists the
notations frequently used.

123

Streaming data cleaning based on speed change

Table 1 Notations Symbol Description

x A sequence of data points

x′ In-order repair of sequence x

x[i] or xi Value of i-th data point in x

xi ... j A subsequence of x from i-th to j-th data points

ti Timestamp of i-th data point

θ Error range of each data point

δ Cost budget for repairing

ui Speed change before and after i-th data point

�(x, x ′) Repair cost from x to x ′

log P(x) Log probability of a sequence x (Eq. 2)

β Decay factor for weighted probability construction

Gi (x ′′
i) Probability gain from repairing x ′

i to x ′′
i

Mc(x) Maximum repaired log P(x) with δ = c

δ0 Adaptive budget in adaptive algorithms

ρ · e−λz Exponential function for curve fitting

α Threshold factor of adaptive budget

w Sliding window size of adaptive budget

dmax Maximal latency in streaming scenario

W Window size of streaming algorithms

G Probability gain set of applied repairs

2 Problem statement

2.1 Preliminaries

Consider a sequence x = x[1], x[2], . . . , where each x[i] is
the value of the i-th data point from a finite domain.1 For
brevity, we write x[i] as xi , and xi ... j denoting the subse-
quence xi , xi+1, . . . x j of x.

Each xi is associatedwith a timestamp ti and an error range
θi . The error range, e.g., specified by engineering tolerance,
denotes that the true value x′

i of i-th data point may be in the
range of [xi − θi , xi + θi], denoted by x′

i ∈ [xi ± θi]. While
some data sequences may have individual θi for each data
point i , e.g., indicated as “accuracy” in GPS readings, others
may specify a single θmax denoting the maximum error range
for all data points in the sequence, such as in sensor readings.
Since we do not have any priori knowledge on which points
are dirty, every point is potentially a dirty point.

The speed is defined on the change of value [35], e.g.,
vi−1,i = xi−xi−1

ti−ti−1
from data point i − 1 to i . Let

ui = vi,i+1 − vi−1,i = xi+1 − xi
ti+1 − ti

− xi − xi−1

ti − ti−1
(1)

be the change of speed before and after the i-th point.

1 Except QP our methods traverse the repairing space of each data point
so that a discretization in advance is needed if the value is continuous.

Converting multiplication to addition by logarithmic
operations for calculation facilitation, the log probability
log P(x) of a sequence x is approximated by

log P(x) =
n−1∑

i=2

logP(ui) = log
n−1∏

i=2

P(ui) (2)

where P(ui) denotes the probability of speed change ui .
Equation 2 makes a strong simplification that speed

changes are independent.We note that this type of simplifica-
tion may hardly be justified in practice. Unfortunately, even
with such a simplification, the repairing problem is already
NP-hard, as shown in Sect. 2.3. Therefore, we have to make
a trade-off between repairing overhead and accuracy. Never-
theless, although such a simplification may be violated, such
as in financial time series, the results over STOCK (corre-
sponding to Fig. 1) show that our algorithms can still perform
well under the simplification, in Sect. 7.2.

Assumption 1 Errors occur randomly both in terms of occur-
rence likelihood and in terms of values.

In other words, errors may occur at any point i in the time
series.Moreover, the erroneous value xi could be any value in
the error range [x′

i −θi , x′
i +θi], or equivalently x′

i ∈ [xi ±θi]
as introduced at the beginning of Sect. 2.1.

Assumption 2 Errors are infrequent in the dirty time
sequence.

123

H. Wang et al.

This assumption is obeyed bymany datasets. For example,
only 7% of data in a stock dataset is inaccurate [35] and
real dataset GPS has only 6.4% of dirty points. Meanwhile,
similar assumptions are shown in other outlier detection and
repairing works [27, 46]. Without prior knowledge, all these
works including ours learn expected patterns from the dirty
sequence and too many errors inevitably distort the patterns
and repairs [5].

Assumption 3 The sequence of speed changes is stationary
for a period of time.

Differencing [20] is a widely used technology to make
a non-stationary time sequence stationary. As indicated in
[20], it is almost never necessary to use more than second-
order differencing in practice. In fact, speed change can be
regarded as a two-order differencing so that the sequence of
speed changes is nearly stationary. For example, the p-values
of augmented Dickey-Fuller test [9] on the speed changes
of STOCK and GPS are both less than 0.001 showing the
stationarity. Although speed change sequence with seasonal
pattern is not suitable, there are still many datasets obeying
this assumption.

Based on Assumptions 2 and 3, how to construct the
empirical probability distribution on speed changes is dis-
cussed in Sect. 3.

2.2 Problem of repairing as a whole

For repairing as a whole, we consider a finite sequence.
Following the same line of maximal probability repairing
over relational data [44], we propose the repair problem over
sequential data as follows.

Problem 1 Given a finite sequence x of n data points and a
repair cost budget δ, the maximum probability problem for
repairing as a whole is to find a repair x′ such that�(x, x′) ≤
δ and log P(x′) is maximized.

Notably, if we put no limitation on the repair, the speed
change sequence may be smoothed to one that is constantly
equal to the mode of the data. To avoid it, referring to the
minimum change principle in data repairing [6], we consider
the repair cost from x to x′ as in [35] and give a budget δ for
it:

�(x, x′) =
n∑

i=1

|x′
i − xi | ≤ δ

As illustrated in Sect. 5, such a budget could be determined
adaptively.

The dirtiness is thus not evaluated in terms of devia-
tion from the mode, but the deviation from the probability
distribution. If a speed change is frequently observed, its

Fig. 2 Possible repairs of an example sequence

Fig. 3 Example speed change probability distribution

probability is high and thus not likely to be regarded as dirty.
On the contrary, a rare speed change is more likely to be
caused by a dirty value due to its low probability.

We formalize the repair problem as follows.

max
n−1∑

i=2

log P

(
x′
i+1 − x′

i

ti+1 − ti
− x′

i − x′
i−1

ti − ti−1

)

s.t.
n∑

i=1

|x′
i − xi | ≤ δ

x′
i ∈ [xi ± θi] 1 ≤ i ≤ n (3)

With the limit of δ and θ , repair will not change data
distribution toomuch compared to the original data. Thereby,
we construct the probability distribution on the original data
as shown in Sect. 3.1, without updating the data distribution
P as data repairing.

Example 2 Let’s consider a sequence x ={11, 12, 15, 14, 15,
15, 17}, with timestamps t = {1, 2, 3, 4, 5, 6, 7}. Figure2a
illustrates the data points (in black), and Fig. 3 shows the
corresponding probability distribution of speed changes.

The probability of speed change on the 3rd point (x3) is

P(u3) = P

(
14 − 15

4 − 3
− 15 − 12

3 − 2

)
= P(−4) = 0.1,

with log P(u3) = log(0.1) = −2.3. By similarly computing
the probability on other data points, we have the log probabil-

123

Streaming data cleaning based on speed change

ity of x, i.e., log P(x) = log(0.25) + log(0.1) + log(0.25) +
log(0.2) + log(0.25) = −8.1.

Since the third observation has log P(u3) = −2.3, much
lower than those of all others like log P(u2) = −1.4 or
log P(u4) = −1.6, we may identify it as dirty data with
a lower probability of speed change. Such a dirty value may
be introduced by various reasons, such as measurement error
or sensor failures. The repairing thus proposes to modify the
third observation for a larger speed change probability.

The maximum (log) probability will be reached when the
probability of speed change P(ui) is maximized for each ui ,
i.e., having speed change ui ∈ (−1, 1] with P(ui) = 0.3.
Consequently, the maximum log probability is log P(x∗) =
5 ∗ log(0.3) ≈ −6.0.

2.3 Hardness

Consider the sequence x = {11, 12, 15, 14, 15, 15, 17} in
Example 2. Suppose that the error range is θi = 3 for all the
data points i . That is, for each point xi , there are 7 potential
modifications, x′

i = {xi − 3, . . . , xi + 3}. A large number
of 77 combinations could be considered as possible repairs.
In particular, the repairing of x′

i is affected by the choices of
x′
i−1 and x′

i+1 w.r.t. the speed change probability (in Fig. 3).
Intuitively, we can build a reduction from the 0/1 knapsack
problem, by modeling the item values as the speed change
probabilities, and thus show the hardness of our repair prob-
lem above.

Theorem 1 Given a sequence x with error range θ , repair
cost budget δ, and threshold 	, the problem is np-complete to
determine whether exists a repair x′ of x such that�(x, x′) ≤
δ and log P(x′) ≥ 	.

Proof The problem is clearly in np. Given a repair x′, it can
be verified in polynomial time whether each point repair x′

i
is in the valid range and�(x, x′) ≤ δ. Besides, log P(x′) can
also be computed in polynomial time.

To prove the NP-hardness, we show a reduction from
the 0/1 knapsack problem, which is one of Karp’s 21 np-
complete problems [22]. Given a set of n items numbered
from 1 up to n, each with a weight wi and a value vi , along
with amaximumweight capacity, the problem is tomaximize
the sum of the values of the items in the knapsack so that the
sum of the weights is less than or equal to the knapsack’s
capacity.

We create five data points with values xi1, . . . , xi5 for each
item i , having

xi1 = bi , θi1 = 0,

xi2 = bi , θi2 = 0,

xi3 = 2bi , θi3 = wi ,

xi4 = 4bi , θi4 = 0,

xi5 = 7bi , θi5 = 0,

where bi = 4 ∗ (w1 + · · · + wi−1) + 2wi + i .
The log probabilities of speed changes are defined2 as

log P(ui) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vi/3 if ui = ui1 = bi − wi ,

vi/3 if ui = ui2 = bi + wi ,

vi/3 if ui = ui3 = bi − 2wi

vi/3 if ui = ui4 = bi + 2wi ,

0 otherwise

for i = 1, . . . , n.
We can show that there is a subset of items with total

weight W and total value V , if and only if there is a repair x′
with �(x, x′) = W and log P(x′) = V . �	

2.4 Streaming repair problem

In a stream, data points may come out of order. For example,
in the Internet of Things (IoT) scenario, sensors collect data
and transmit them to servers, where complex operations like
data repairing are conducted. Due to network latency, device
failures or data retransmission [25, 35], delay may occur to
some of the data points. In other words, servers may receive
them later than the data points with larger timestamps, lead-
ing to the out-of-order time sequence. When merging data
from independent streams with clocks that cannot be synced,
out-of-arrivals may also occur. However, in such a scenario,
the timestamps by unsynchronized clocks are also dirty and
need repair [14], which is out of the scope of this study.

Note that we construct the probability distribution based
on the statistics of the currently arrived data points in the
stream. Our study thus focuses on the repairing problem in
the presence of out-of-order arrivals. Itwill bemore challeng-
ing to consider out-of-order arrivals in both the probability
distribution construction anddata repairing. Intuitively, if one
of the sensor sources transmits slower than it should, unlike
random occurrences, there are some patterns of delay that
can be utilized in the probability distribution construction.
If the out-of-order arrivals occur in batches, the probability
distribution constructed on the currently arrived data points
may not be reliable for repairing.We leave the interesting yet
challenging direction for future study.

Suppose r(xi) is the index of xi after reordering the dirty
sequence x , the repair cost from xi ... j to x ′

r(xi ... j)
is

�(xi ... j , x
′
r(xi ... j)) =

j∑

k=i

|x ′
r(xk) − xk |

2 The log probability is only defined in this proof. In actual repairing,
it is constructed from original data.

123

H. Wang et al.

Meanwhile, only a period of data points can be repaired
at one time, which corresponds to the scroll or sliding win-
dows in Sect. 6. The number of relevance in repairing is not
the total number of data points in the probability distribution
construction but the length of the window. The length could
be occasionally 3, or any other user-specified, such as 730.
The experimental results in Fig. 26, 27 and 28 in Sect. 7.4.2
show the trade-off by the size of window. That is, a larger
window size leads to better repair RMS error with more local
data points considered but higher time cost. A smaller win-
dow size is the opposite. Besides, it is impractical tomanually
specify the dynamic budget δ for each period.

Considering above difficulties, the streaming repair prob-
lem over sequential data is as follows.

Problem 2 Given a period xi ... j in an out-of-order stream
x , the streaming maximum probability repair problem is to
find an in-order repair x ′

r(xi ... j)
such that �(xi ... j , x ′

r(xi ... j)
) ≤

δ(xi ... j) and log P(x ′
i ... j) is maximized.

We formalize the repair problem as follows.

max
j−1∑

k=i+1

log P

(
x′
k+1 − x′

k

tk+1 − tk
− x′

k − x′
k−1

tk − tk−1

)

s.t.
j∑

k=i

|x ′
r(xk) − xk | ≤ δ(xi ... j)

x′
r(xk) ∈ [xk ± θk] i ≤ k ≤ j (4)

Example 3 Consider the out-of-order sequence x ={11, 12,
14, 15, 15, 17, 15}, with timestamps t = {1, 2, 4, 3, 5, 7,
6}. When the first three data points arrive, we simply get
u = 14−12

4−2 − 12−11
2−1 = 0 and put it into the probability distri-

bution.After that, when delayed point x4 arrived, it is inserted
into the correct place. Thus, u = 14−15

4−3 − 15−12
3−2 = −4 is put.

Following the same line, we construct the probability distri-
bution gradually. The details of probability construction are
shown in Sect. 3.

For repairing, x4 and x7 are recognized as dirty, and
repaired to 13 and 16, respectively, using the scroll win-
dow algorithms in Sect. 6.1. Besides modifying the dirty data
points, we also reorder according to the timestamps. Thus,
the repaired sequence is x ={11, 12, 13, 14, 15, 16, 17}, with
timestamps t = {1, 2, 3, 4, 5, 6, 7}.

2.5 Normalization

In the scenario of repairing the time sequence as a whole,
the entire time series is given as the input, together with
its budget δ. The DPL method (presented in the conference
version [48]) introduces a normalization factor H and maps

Fig. 4 The comparison between speed change distribution constructed
from original dirty sequence and the ground truth over GPS dataset

the budget from δ to δ
H . It greatly reduces the candidate values

and thus improves the time efficiency of repairing.
In the streaming scenario, the budget is not fixed and thus

cannot apply the normalization in DPL. Intuitively, the val-
ues are within the error range w.r.t. θ as discussed after the
aforesaid Assumption 1. In this sense, normalization on θ

will not encounter data that are out of bounds. Similar to
the normalization on δ, we introduce the normalization fac-
tor H on θ . In other words, we only consider candidates in
x′
i ∈ {xi ± (H · j) | j ∈ [−
 θi

H �,
 θi
H �]} rather than the

entire range. Since the normalization does not change the
error range, reducing only the candidates, the definition of
outliers and the computation of distribution are not affected.

3 Probability distribution construction

3.1 Construction on dirty sequence

Ideally, the speed change probability should be con-
structed from the ground truth to obtain real distribution,
which is often unlikely in practice. Therefore, we propose to
construct on the original (dirty) data. According to Assump-
tion 3, we use the frequency of the speed change as the
approximation of the probability. The probability construc-
tion is independent of data repairing. Specifically, when a
data point is modified in repairing, the probability distribu-
tion P̂ should not be modified as well.

It is true that the frequency distribution works well only
if the data are discrete and if each category has a sufficiently
high probability. Note that our distribution is about the speed
changes, rather than the original values possibly with high
precision. For example, for the financial data such as in Fig. 1,
rather than studying the frequency distribution of the origi-
nal STOCK prices, we construct the probability distribution
of speed changes on the STOCK prices. To avoid isolated
bars, binning is used to construct the distribution, i.e., nearby
speed changes are gathered in the same bin. With proper bin
width on speed changes, even if the original data is high pre-
cision, the difference in the repaired data is not significant.

123

Streaming data cleaning based on speed change

The experimental results in Fig. 15 in Sect. 7.2.4 show that
the RMS error of the repair is low over the STOCK data.

Referring to the methods in [11], we use JS-divergence
to describe the statistic distortion. Due to Assumption 2, the
distortion is not severe. For example, the JS-divergence of
two distributions in Fig. 4 over GPS dataset is only 0.0012,
implying that P̂ is an opposite approximation of real distri-
bution. Moreover, we can clean the probability distribution
in advance if necessary. Common cleaning strategies, such
as K-Sigma principles and outlier detection, can be used in
the cleaning.

3.2 Simple distribution construction

In a stream, we use all of the currently arrived data points
in the probability distribution construction. When new data
points arrive in the stream, we update the distribution refer-
ring to the new arrivals.

To trust the distribution estimator, we need adequately
many instances. Therefore, we empirically show the number
of data points that are sufficient to obtain statistical distribu-
tion steady in a data stream. For example, Fig. 5 illustrates
the statistical distributions over the first 100, 1000 and 10000
data points, respectively. As shown, the distribution over
1000 points is already very close to the one over a signif-
icantly larger 10000 points.

To further illustrate the number of data points that are
sufficient for statistical distribution in practice, Fig. 6 shows
the JS-divergence between the statistical distributions over
the firstm data points in a time series and all the n data points
in the whole time series. As shown in different datasets, by
using the first 500 data points, the statistical distribution is
already very close to the one over the entire dataset.

Nevertheless, we conduct a statistical significance test,
two-sample Kolmogorov–Smirnov test [3]. The null hypoth-
esis is that the distributions constructed with the first m data
points and all n data points are from the same distribution. It
is rejected when the p-value is smaller than the significance
level, e.g., 0.05. As shown in Table 2, the hypothesis with
variousm in all three datasets is not rejected, illustrating that
the distributions are close.

Finally, the experiments inFigs. 29, 30 and31 inSect. 7.4.3
show that by even using only the first 200 arrived data points,
the constructed distribution already leads to similar repair
performance compared with those built on 500 arrived data
points, in various datasets. In this sense, the distributions
obtained from the first hundreds of points are already as reli-
able as the computations over more remaining points.

3.3 Weighted distribution construction

Concept shift and drift [12, 15, 38] are common characteris-
tics of stream data. In this paper, it means the speed change

Fig. 5 Speed change distribution constructed with various data points
over HHAR

0 500 1000
Number of Data Points

0

0.2

0.4

JS
 D

iv
er

ge
nc

e

(a) STOCK

0 500 1000
Number of Data Points

0

0.2

0.4

JS
 D

iv
er

ge
nc

e

(b) GPS

0 500 1000
Number of Data Points

0

0.2

0.4

JS
 D

iv
er

ge
nc

e

(c) HHAR

Fig. 6 JS-divergence between the distribution constructed on various
number of data points and the distribution on all the data points in the
dataset

Table 2 Results of two-sample KS tests

m STOCK GPS HHAR
Rej P-value Rej P-value Rej P-value

100 No 0.60 No 0.51 No 1.00

200 No 0.97 No 0.58 No 0.89

300 No 0.98 No 0.54 No 0.72

500 No 1.00 No 0.80 No 0.67

700 No 1.00 No 0.81 No 0.87

1000 No 1.00 No 0.59 No 0.75

distribution may be changed over time. Thus, simple prob-
ability construction in Sect. 3.2 which uses all arrived data
points equally in distribution is not suitable.

To deal with it, we propose a weighted probability con-
struction with a forgetting mechanism [19]. Suppose that
there are n arrived data points currently. We assign eβ(i−n)

weight to speed change ui , where β is a decay factor. Thus,
with exponentialweight, the close data pointwill play amuch
more important role. When β = 0, it degenerates to simple
construction with equal weight.

3.4 Clarification on distribution assumption

It is worth noting that only the QP and SG algorithms pro-
posed in the conference version [48] need the assumption
of Gaussian distribution, used for more efficient computa-
tion. All the methods studied in this study do not need such
an assumption. For instance, Fig. 11 illustrates the statisti-
cal distributions of six different datasets, some of which are
obviously not Gaussian distribution.

Instead,whatwe assume is that the statistical distributions,
either Gaussian or not, are steady in different parts of the time
series, as discussed in Assumption 3. In this sense, the statis-

123

H. Wang et al.

tical distribution, either on the whole dataset for Repairing
as a Whole or on the first part of the time series for Stream-
ing Repair, can be utilized to advise the repair in different
parts of the data. In particular, for the streaming scenario, the
statistical distribution that is close to the one of the whole
dataset can be followed. Again, as illustrated in Fig. 6, it is
often sufficient to consider the statistical distribution over the
first 500 data points in the dataset.

4 Repair in a window as a whole

In this section, we discuss repairing the subsequence in an
independent window. Because the subsequence can be seen
as a whole, it is a repair problem as Problem 1. Referring to
the conference version [48], the dynamic programming algo-
rithms are introduced briefly. After that, a universal greedy
algorithm is introduced for efficiency.

In this scenario, all data points in the window are acces-
sible. Before repairing, we can easily reorder the data points
according to their timestamps. Thus, out-of-order arrival is
not considered in this section.

4.1 Dynamic programming algorithms

Based on the idea of dynamic programming, we divide the
entire problem into a series of sub-problems. Let x′

1...i be
a repair of the subsequence x1...i with the maximum log
probability3 log P(x′

1...i), whose cost is �(x′
1...i , x1...i) = ci ,

and the last two values of x′
1...i are x′

i−1, x
′
i , respectively.

We denote this maximum log probability log P(x′
1...i) by

D(i, ci , x′
i−1, x

′
i).

The recurrence computation is as follows

D(i, ci , x
′
i−1, x

′
i)

= max
x′
i−2∈[xi−2±θi−2]

D(i − 1, ci−1, x
′
i−2, x

′
i−1)+ log P(u′

i−1)

(5)

where ci−1 = ci −�(x′
i , xi), and u

′
i−1 = x′

i−x′
i−1

ti−ti−1
− x′

i−1−x′
i−2

ti−1−ti−2
.

Initially, for i = 2, we have

D(2, c2, x
′
1, x

′
2) = 0,∀x′

1 ∈ [x1 ± θ1],∀x′
2 ∈ [x2 ± θ2].

This algorithm is called DP with O(nθ3maxδ) time com-
plexity and O(nθ2maxδ) space complexity.

Besides, DPC is the dual algorithm of DP. Let x′
1...i be

a repair of the subsequence x1...i , whose log probability is
log P(x′

1...i) = li , the last two values of x′
1...i are x′

i−1, x
′
i ,

3 Probability distribution is constructed before dynamic programming
and remains unchanged during the repairing.

respectively, and the cost �(x′
1...i , x1...i) minimized. We

denote thisminimized cost�(x′
1...i , x1...i)byC(i, l, x′

i−1, x
′
i).

The recurrence computation is as follows

C(i, li , x
′
i−1, x

′
i)

= min
x′
i−2∈[xi−2±θi−2]

C(i − 1, li−1, x
′
i−2, x

′
i−1) + �(x′

i , xi)

(6)

where li−1 = li − log P(u′
i−1), and u′

i−1 = x′
i−x′

i−1
ti−ti−1

−
x′
i−1−x′

i−2
ti−1−ti−2

.

Initially, for i = 2, we have

C(2, 0, x′
1, x

′
2) = �(x′

1, x1) + �(x′
2, x2),

∀x′
1 ∈ [x1 ± θ1],∀x′

2 ∈ [x2 ± θ2].
DPC is a quadratic-time (for fixed error range θ), constant-

factor approximation algorithm, which runs in O(n2θ3max)

time with O(n2θ2max) space.

4.2 Universal greedy algorithm

Low time efficiency is an essential problem of dynamic pro-
gramming algorithms. Thus, we introduce a universal greedy
algorithm which computes much faster. Moreover, this uni-
versal algorithm has no requirements on the distribution
of speed changes (different from SG [48] assuming Gaus-
sian distribution). Besides, this idea is also adapted to the
incremental greedy algorithm in Sect. 6.2 to support stream
computation.

4.2.1 Probability gain

Firstly, we talk about the probability gain of a repair. Let x ′ be
the current repair, initially x ′ = x . Suppose x ′′

i is a repair of a
single data point x ′

i . When this repair is applied, ui−1, ui and
ui+1 will be changed. According to Eq. 2, if x ′

i is modified
to x∗

i , the influenced terms in log P(x ′) is as follows.

Qi (x
∗
i) = log P

(
x∗
i − x ′

i−1

ti − ti−1
− x ′

i−1 − x ′
i−2

ti−1 − ti−2

)

+ log P

(
x ′
i+1 − x∗

i

ti+1 − ti
− x∗

i − x ′
i−1

ti − ti−1

)

+ log P

(
x ′
i+2 − x ′

i+1

ti+2 − ti+1
− x ′

i+1 − x∗
i

ti+1 − ti

)
(7)

In our greedy strategy, the repair cost should be increased
by every repair. Thus, probability gain of repair x ′′

i is defined
as

Gi (x
′′
i) =

{
Qi (x ′′

i) − Qi (x ′
i) ,�(x ′′

i , xi) > �(x ′
i , xi)

0 ,�(x ′′
i , xi) ≤ �(x ′

i , xi)
(8)

123

Streaming data cleaning based on speed change

where Q(i, x ′′
i) and Q(i, x ′

i) are the log probability after and
before this new repair, �(x ′′

i , xi) and �(x ′
i , xi) are the repair

cost, respectively. Obviously, onlywhen a repair x ′′
i increases

both the probability and the cost, we have Gi (x ′′
i) > 0.

4.2.2 Universal greedy

Based on the above concept, the greedy idea is to continu-
ously apply the repair with the highest probability gain. In
the beginning, we initialize the table of probability gain. For
each i ∈ {1, 2, . . . n} and x ′′

i ∈ [xi ±θi], we compute Gi (x ′′
i)

and keep them with a max-heap.
In each iteration, we choose the repair x ′′

i on the top of
the heap. If the cost of x ′′

i is not larger than the remaining
budget, just apply it. Otherwise, remove it from the heap and
continue choosing the top until a cost-proper repair. Due to
δ θi in most real datasets, only the last several repairs
will suffer from the insufficient budget. After choosing and
applying, we recalculate the following gains and adjust the
heap.

G j (x
′′
j), j ∈ {i − 2, i − 1, i, i + 1, i + 2}, x ′′

j ∈ [x j ± θ j]

The algorithm terminates after budget δ is used up or no
Gi (x ′′

i) is above zero. Algorithm 1 presents the main proce-
dure of this universal greedy algorithm.

Algorithm 1: UG(x, θ, δ)

Data: data sequence x, error range θ , repair budget δ
Result: the repaired data sequence x ′

1 x ′ ← x ;
2 cost ← δ;
3 initialize Gi (x ′′

i) for each i, x ′′
i and put into heap;

4 while cost > 0 do
5 Gi (x ′′

i) ← heap.top();
6 heap.removeTop();
7 if Gi (x ′′

i) ≤ 0 then
8 break;
9 if cost ≥ �(x ′′

i , xi) − �(x ′
i , xi) then

10 x ′
i ← x ′′

i ;
11 cost ← cost − (�(x ′′

i , xi) − �(x ′
i , xi));

12 modify G j (x ′′
j), j ∈ [i ± 2], x ′′

j ∈ [x j ± θ j] and adjust

heap;
13 return x ′

Example 4 (Universal Greedy Algorithm) Consider the
sequence x ={11, 12, 15, 14, 15, 15, 17} in Example 2 with
the probability distribution in Fig. 3. Suppose θi = 2. At the
beginning, we calculate Gi (x ′

i) for each i and x ′
i , then keep

them in a max-heap.
In the first iteration, the heap is shown in Table 3.

G3(13) = 1.5 is on the top. Therefore, we apply the repair,
i.e., x ′

3 = 13, with the cost of 2 and adjust the heap.

Table 3 Example of universal greedy

Element Iteration 1 Iteration 2

1 x ′
3 = 13,G = 1.5 x ′′

6 = 16,G = 0.6

2 x ′
3 = 14,G = 1.1 x ′′

6 = 17,G = 0.2

3 x ′
4 = 16,G = 0.9 x ′′

5 = 14,G = 0.2

4 x ′
5 = 14,G = 0.8 x ′′

7 = 15,G = 0.2

5 x ′
5 = 13,G = 0.6 x ′′

7 = 16,G = 0.2

6 . . .

In the second iteration, the greedy algorithm chooses the
top G6(16) = 0.6, generating the new repair x ′′

6 = 16.
Then, the probability cannot be further increased (The heap
is empty). Thus, the algorithm is terminated. Finally, the opti-
mal sequence is {11, 12, 13, 14, 15, 16, 17} with δ ≥ 3.

If the budget is not enough, e.g., δ = 2, the algorithm will
stop after one iteration and return {11, 12, 13, 14, 15, 15,
17}.

Proposition 1 The greedy algorithm runs in O((n + δ)θmax

log(nθmax)) time.

Proof First, we should calculate Gi (x ′′
i) for each i ∈ [1, n]

and x ′′
i ∈ [xi ± θi]. Thus, there are O(nθmax) different ele-

ments. Building a heap with such elements needs O(nθmax)

time.
Then, for each iteration, the time of selecting the top ele-

ment and applying is O(1). After that, O(θmax) elements
should be adjusted, whose time complexity is O(θmax log
(nθmax)). There are at most δ iterations.

Finally, UG costs O((n + δ log(nθmax))θmax) time. �	

5 Budget determination

The repair cost budget δ is a pivotal parameter for repairing
highly related to the repair accuracy. If δ is too small, errors
in the sequence cannot be cleaned completely. On the con-
trary, over-repairing happens when δ is too large. Therefore,
an automatic budget determination can not only reduce the
burden to specify parameters but also prevent serious perfor-
mance loss caused by improper budget.

In this section, we introduce an intuition of determining
δ. After that, we propose a detailed mathematical method to
find a proper δ. Finally, we improve the above algorithms to
make them budget-adaptive.

5.1 Intuition

Through a large number of experiments on multiple datasets,
we have a practical intuition to set budget δ properly: δ0 is
selected as the proper one if the probability increases much

123

H. Wang et al.

 365

 370

 375

 380

 385

 1540 1545 1550 1555 1560 1565 1570 1575

V
al

ue

Time

Observation
Truth

budget=35

budget=15

budget=5
Observation

Truth
budget=5

budget=15
budget=35

Fig. 7 Example repairs with various repair cost budgets δ

0 10 20 30 40 50
Budget

0.5

1

1.5

2

R
M

S
 E

rr
or

(a)

0 10 20 30 40 50
Budget

-70

-60

-50

-40

-30

Lo
g

P
ro

ba
bi

lit
y

(b)

Fig. 8 Repair result a error and b log probability under various repair
cost budgets δ

more slowly when δ > δ0. The following example explains
it in detail.

Example 5 (Repair and cost) Consider the sequence in
Fig. 7, a real segment from the STOCK4 dataset. Given a
small repair cost budget, e.g., δ = 5, referring to the opti-
mization problem in Eq. 3, a repair x′ will be returned, with
four points changed at time 1553, 1561, 1569 and 1573, as
shown in Fig. 7. It has repair cost�(x, x′) = |x1553−x′

1553|+|x1561−x′
1561|+|x1569−x′

1569|+|x1573−x′
1573| = 5 ≤ δ, with

the maximized log probability log P(x′) = −50.1. Notably,
the large spike at time 1547 could not be repaired under this
small budget.

On the other hand, if the repair cost budget is too large, e.g.,
δ = 35, a repair x′ with a large number of modified points is
returned. The corresponding repair cost is �(x, x′) = 33 ≤
δ, with the maximized log probability log P(x′) = −27.0.

Intuitively, we would consider a “proper” setting of repair
cost budget, e.g., δ = 15 with log P(x ′) = −32.8 which
is neither too small (δ = 5 with data points barely repaired
and low returned probability) nor too large (δ = 35 with
data points over repaired but no large probability gain). Fol-
lowing this guideline, a good δ could be practically chosen
by observing the log probabilities returned together with the
repair results. For instance, the probability does not greatly
increase by setting δ from 15 to 20 in Fig. 8b. That is, with δ

in the range from 15 to 20, the data are neither insufficiently
repaired nor over-repaired.

4 http://finance.yahoo.com/q/hp?s=AIP.L+Historical+Prices.

0 10 20 30 40 50
Index

0

2

4

6

P
ro

ba
bi

lit
y

G
ai

n Original Data
f(z)= e- z

(a) STOCK

0 50 100 150 200 250
Index

2

4

6

8

10

P
ro

ba
bi

lit
y

G
ai

n Original Data
f(z)= e- z

(b) GPS

Fig. 9 Probability gain in descending order and its fitting curve

5.2 Formalization

The relationship between probability gain and budget indi-
cates an evident long tail as shown in Fig 8. According to
Pareto Rule [1], the top 20% budget achieves 80% proba-
bility gain, which points out the transition point in the long
tail distribution. Referring to the intuition above, δ0 should
achieve 80% of the maximum probability gain.

Example 6 Consider the sequence in Example 5, its log prob-
ability varies with the budget δ as shown in Fig. 8b. Without
repairing, the log probability is log P(x) = −68.5 while the
maximum log probabilitywith δ = 50 is log P(x ′) = −26.5.
Thus, the log probability with 80% gain is −68.5 + 0.8 ∗
[(−26.5) − (−68.5)] = −34.9. δ = 15 is the minimum
budget whose corresponding log probability is above−34.9,
which is regarded as the proper one.

Calculating the maximum probability is computation-
consuming. In the worst case, the probability with δ =∑n

i=1 θi should be calculated, i.e., all data points are repaired
with the maximum range. Therefore, we hope to discover the
pattern of probability, thereby reducing complexity.

Example 7 Consider again the log probability with various δ

in Fig. 8b. We calculate the probability gain and sort them
in the descending order, as shown in Fig. 9a, together with
the fitting curve f (z) = ρ · e−λz = 5.369e−0.1319z . With
the coefficient of determination R2 = 0.9799, we believe
that the probability gain follows this exponential expression.
Similar results are also shown in Fig. 9b with R2 = 0.9833.

Therefore, instead of picking up the budgetwith 80%max-
imumprobability gain, we calculate the probability gain with
a smaller δ and fit with an exponential curve.

Proposition 2 Let f (z) = ρ · e−λz with λ > 0, we have

∫ m

0
f (z)dz = a

∫ +∞

0
f (z)dz ⇔ f (m) = (1 − a)ρ

Proof F(z) = −ρ
λ
e−λz is the indefinite integral of f (z).

Thus, we have−ρ
λ
(e−λm −1) = a ρ

λ
, which leads to f (m) =

ρe−λm = (1 − a)ρ. �	

123

http://finance.yahoo.com/q/hp?s=AIP.L+Historical+Prices

Streaming data cleaning based on speed change

After getting the parameters ρ and λ, we use the following
equation to select the proper budget:

δ0 = min

{
δ|M

δ+w/2(x) − Mδ−w/2(x)

w
< αρ

}
(9)

where Mδ(x) is the maximum log probability of sequence x
with budget δ and threshold factor α = 0.2. To smooth the
influence of noises, we use a sliding window whose size is
w.

5.3 Budget-adaptive algorithms

With Eq. 9, algorithms can be budget-adaptive, i.e., automat-
ically terminated within the proper budget. In this part, the
budget-adaptive versions of DP,DPC and UG are introduced.
Their complexities are the same as the original ones.

5.3.1 Adaptive-DP

For the dynamic programming algorithm DP, suppose the
exponential fitting parameter ρ is estimated, a naive way
to achieve budget-adaptive is running DP with increasing δ.
Then, calculate the probability of sequence for each δ and
terminate according to Eq. 9. However, there is too much
overlapping computation. The time complexity degenerates
to O(nδ20θ

3
max)where δ0 is the adaptive budget. To reduce the

complexity, we should compute incrementally under differ-
ent budgets. Themain procedure is presented in Algorithm 2.

In the outermost loop,we continuously increase c. In every
iteration, we have

Mc(x) = max
x ′
n−1,x

′
n

D(n, c, x ′
n−1, x

′
n).

The outermost loop terminates until δ0 is found.
Now, the only problem is when to fit and estimate ρ. It is

divided into two stages: The first stage is rough estimation to
determine when for curve fitting. Fitting with too much data
leads to a waste of computation while the contrary leads to
inaccurate parameter estimation. We estimate ρ with f (0),
i.e., the maximum probability gain. When the following con-
dition ismetwith the current cost c, we go to the second stage:

Mc(x) − Mc−w(x)

w
< α · max

w≤i≤c

{
Mi (x) − Mi−w(x)

w

}

The second stage is a fine estimation. We make the
exponent fitting with the existing probability gains, i.e.,
Mi (x), 0 ≤ i ≤ c, to estimate ρ. After estimation, we deter-
mine the proper budget δ0 according to Eq. 9.

Example 8 Consider again the sequence in Example 5. We
use Adaptive-DP to repair this sequence with w = 6. The

Algorithm 2: Adaptive − DP(x, θ, w, α)

Data: data sequence x, error range θ , window size w, threshold
factor α

Result: the maximum log probability of the optimal repair with
adaptive budget

1 initialize D(2, c2, x′
1, x

′
2) for each x

′
1, x

′
2;

2 maxGain ← 0;
3 f i t ted ← f alse;
4 for c ← 0 to ∞ do
5 for i ← 3 to n do
6 Calculate D(i, c, x ′

i−1, x
′
i) for ∀x ′

i−1, x
′
i ;

7 Mc(x) ← maxx′
n−1,x

′
n
D(n, c, x′

n−1, x
′
n);

8 maxGain ← max(maxGain,
Mc(x)−Mc−w(x))

w
;

9 if ¬ f i t tecd ∧ [Mc(x)−Mc−w(x)
w

< α · maxGain] then
10 Make the fitting and estimate ρ and λ;
11 f i t ted ← true;

12 if {δ| Mδ+w/2(x)−Mδ−w/2(x)
w

< αρ} �= ∅ then

13 δ0 = min{δ| Mδ+w/2(x)−Mδ−w/2(x)
w

< αρ};
14 return Mδ0 (x);

15 if f i t ted ∧ [Mc(x)−Mc−w(x)
w

< αρ] then
16 return Mc−w/2(x);

operation of dynamic programming is basically the same as
that of DP (see Example 4 and 5 of the conference version
[48] for details). To select the proper budget, we first find that
M6(x)−M0(x)

6 = 3.25 is the maximum probability gain (see

Fig. 8b). When c = 16, we find Mc(x)−Mc−w(x)
w

= 0.51 <

0.2 × 3.25 for the first time.
Therefore, we begin to fit with current data, i.e.,

Mc(x)−Mc−w(x)
w

for c ∈ {6, 7, . . . , 16}. With ρ = 3.33, the
threshold is α · ρ = 0.67. Since δ = 13 is minimal for
Mδ+w/2(x)−Mδ+w/2(x)

w
, we finally regard δ0 = 13 as the proper

budget.

Proposition 3 Algorithm Adaptive-DP (Algorithm 2, the
budget-adaptive version of DP) runs in O(nδ0θ

3
max) timewith

O(nδ0θ
2
max) space.

Proof Algorithm DP runs in O(nδ0θ
3
max) time with

O(nδ0θ
2
max) space. Additionally, looking for M

c(x) for each
c runs in O(θ2max) time with O(δ0) space and fitting runs
in O(δ0) time with O(1) space. In conclusion, the overall
complexity is still O(nδ0θ

3
max) for time and O(nδ0θ

2
max) for

space. �	

5.3.2 Adaptive-DPC

For the dual algorithm, we have an easier way to make it
budget-adaptive. Removing the limitation of δ, i.e., δ ←
∞, we run the original algorithm once. Then, by traversing
C(n, l ′n, x ′

n−1, x
′
n), we get the maximum log probability of

arbitrary budget:

Mc(x) = max{l ′n|C(n, l ′n, x ′
n−1, x

′
n) = c}

123

H. Wang et al.

Thus, parameter ρ is estimated with all Mc(x). Referring
to Eq. 9, the adaptive budget can be easily got.

Proposition 4 AlgorithmAdaptive-DPC (the budget-adaptive
version of DPC) runs in O(n2θ3max) time with O(n2θ2max)

space.

Proof AlgorithmDPC runs inO(n2θ3max) timewithO(n2θ2max)

space. Additionally, calculating Mc(x) costs O(nθ2max) time
with O(1) space and fitting runs in O(δ0) time with O(1)
space. In conclusion, the overall complexity is O(n2θ3max)

for time and O(n2θ2max) for space. �	

5.3.3 Adaptive-UG

For the universal greedy algorithms in Sect. 4.2, only the loop
termination condition needs to be changed. After a repair
is applied, we add the corresponding Gi (x ′′

i) into the set
G. Similar to the above methods, we estimate ρ with the
exponential-distributed G when the current Gi (x ′′

i) is less
than α ·max{G}. Then, according to Eq. 9, Gi (x ′′

i) < αρ will
be the new loop termination condition.

Proposition 5 Algorithm Adaptive-UG (the budget-adaptive
version of UG) runs in O((n + δ0)θmax log(n θmax)) time.

Proof Algorithm UG (Algorithm 1) runs in O((n + δ0)θmax

log(nθmax)) time according to Proposition 1. Additionally,
fitting runs in O(δ0) timewith O(1) space. In conclusion, the
overall time complexity is still O((n + δ0)θmax log(nθmax)).

�	

6 Repair withmoving windows

In this section, we discuss streaming repair withmovingwin-
dows. There are two detailed algorithms introduced, which
are based on scroll and sliding windows, respectively. More-
over, since the stream length is infinite, it is impossible to
manually specify the budget, where the idea of budget adap-
tation in Sect. 5 helps.

6.1 Scroll algorithm

Scroll window is a widely used technology in many fields
[31, 42]. Here, we propose the algorithms based on scroll
windows, dividing the stream into windows and handling
them independently.

Suppose themaximal latency isdmax. Thedata pointsmore
than dmax earlier will be ignored. Practically, we set dmax

based on the following criterion: First, very few latency is
not covered by dmax. Second, ignored data points are too late
to influence the real-time decisions. Third, keeping too many
data points leads to too much storage consumed.

The out-of-order stream x should be reordered by times-
tamps as x ′, i.e., t ′i < t ′j for ∀i < j . Let xi be a data point
from input stream x ; it is inserted into the ordered stream x ′
as x ′

l .
With the idea of scroll window, we keep a fixed-size win-

dow whose size is W . If the timestamp of x ′
l is later than the

start of the window, x ′
l will be added to the window. When

the window is full, it will be solved by the adaptive algo-
rithms in Sect. 5.3 with the current probability distribution
and emptied. The probability distribution keeps unchanged
inside each window. If x ′

l is earlier than the start of the win-
dow, we traverse all possible repairs of x ′

l and choose the one
with the largest probability while other points are unchanged.
Algorithm 3 shows the main procedure of scroll algorithms.

Algorithm 3: Scroll − Algorithm(x, θ,W)

Data: out-of-order data sequence x, error range θ , window size
W

Result: the repaired data sequence x ′ ordered by timestamps
1 st ← 1;
2 for i ← 1 to n do
3 insert xi into x ′ as x ′

l ;
4 if l < st then
5 st ← st + 1;
6 x ′

l ← argmaxx ′′
l
G ′

l (x
′′
l);

7 else if i = st + W − 1 then
8 Repair x ′

st ...st+W−1 with adaptive algorithms;
9 st ← st + W ;

10 return x ′;

Example 9 (Scroll Algorithm) Consider the out-of-order
sequence in Example 3 The probability distribution is shown
in Fig. 3. We have θi = 2 and W = 6. When the first 6 data
points come, the window is full. We have x ′[1 . . . 6] ={11,
12, 15, 14, 15, 17} with t ′[1 . . . 6] ={1, 2, 3, 4, 5, 7}. After
repairing, we have x ′[1 . . . 6] ={11, 12, 13, 14, 15, 17}.

For x7, it is inserted as x ′
6. Traverse x

′
6 ∈{13, 14, 15, 16,

17}, we find that the probability reaches maximum when
x ′
6 = 16. Finally, the returned sequence is x ′ ={11, 12, 13,
14, 15, 16, 17} with t ′ ={1, 2, 3, 4, 5, 6, 7}.

6.2 Sliding algorithm

Similarly, sliding window is also a widely used strategy [10,
18].With the sliding idea, we design a greedy algorithm. This
algorithm is incremental, i.e., point in, point out, which has
two main steps.

The first step is reordering just like that in scroll algo-
rithms. The second step is repairing.We use a slidingwindow
containing the lastW data points in x ′. When a data point x ′

p
leaves the window, we traverse and calculate the probability
gain G ′

p(x
′′
p) for all of its possible repairs x

′′
p. The one with

the largest gain is chosen as the final repair.

123

Streaming data cleaning based on speed change

To avoid over-repairing, referring to the idea of Adaptive-
UG, the adaptive budget in Problem 2 is transformed to a
probability gain threshold. The repair whose probability gain
is below the threshold will be pruned. As shown in Sect. 5.2,
we add the probability gain of each applied repair into the set
G, fit it and dynamically set the threshold as αρ. To reduce
the complexity, we only keep the most recent applied gains
in G.

Algorithm 4 shows how the incremental greedy algorithm
based on sliding window works. Once a data point x ′

p is
repaired, its value will never be changed again. There are at
most W points unrepaired in x ′ at the same time. Moreover,
for each coming data point, the time and space cost of IG are
both unrelated to data size.

Algorithm 4: IG(x, θ, α,W)

Data: out-of-order data sequence x, error range θ , threshold
factor α, window size W

Result: the repaired data sequence x ′ ordered by timestamps
1 x ′ ← ∅;
2 G ← ∅;
3 threshold ← 0;
4 for i ← 1 to n do
5 insert xi into x ′ as x ′

l ;
6 p ← min(l, i − W);
7 if maxx ′′

p
G ′

p(x
′′
p) > threshold then

8 x ′
p ← argmaxx ′′

p
G ′

p(x
′′
p);

9 Update G with {maxx ′′
p
G ′

p(x
′′
p)};

10 Make the fitting with G and estimate ρ and λ;
11 threshold ← αρ;
12 return x ′;

Example 10 (Incremental Greedy) Consider again the
sequence in Example 9 and the window size W = 2.
Suppose the threshold is statically set to 0.5 due to the con-
verged fitting. The first four data points are reordered as
x ′ = {11, 12, 15, 14} and t ′ = {1, 2, 3, 4}. At the same time,
we try to repair x ′

1 and x ′
2 but no probability increase can be

made.
After that, x5 is inserted as x ′

5. We have x ′ ={11, 12, 15,
14, 15} and t ′ ={1, 2, 3, 4, 5}. Thus, x ′

3 should be repaired
because 3 = min(5, 5−2). Traverse all possible values, x ′

3 is
repaired to 13 with the probability gain 1.4. Since 1.4 > 0.5,
this repair will be accepted.

Similarly, we can reorder and repair the entire sequence.
At last, the repaired sequence is x ′ ={11, 12, 13, 14, 14, 15,
17} with t ′ ={1, 2, 3, 4, 5, 6, 7}.

Proposition 6 For each coming data point, Algorithm IG runs
in O(log dmax+θmax+|G|) timewith O(|G|+max{dmax,W })
space.

Proof For each data point, the time cost can be divided
into three parts. First, inserting into the correct place needs

Fig. 10 Distribution of speed changes over SYNTHETIC dataset

O(log dmax) time with dichotomy. Second, finding the repair
with maximal probability gain needs O(θmax) time by
traversing all possible repairs. Third, fitting needs O(|G|)
time. Therefore, the total time cost is O(log dmax + θmax +
|G|).

As for space complexity, the space of recent data points
is O(max{dmax,W }). Additionally, with the set G, the total
space is O(|G| + max{dmax,W }). �	

7 Experimental evaluation

7.1 Experiment setup

7.1.1 Algorithm

As for repairing as a whole, we experimentally compare our
proposed methods, DP and DPC in Sect. 4.1, UG in Sect. 4.2,
DPL, QP and SG in conference version [48] with SCREEN
the state-of-the-art approach [35]. We omit to report the
other methods, such as the smoothing-based EWMA [16], or
the constraint-based [17], owing to the clearly worse results
(which are also observed in [35]).

Moreover, we compare our budget-adaptive methods
in Sect. 5.3, including Adaptive-DP, Adaptive-DPC and
Adaptive-UG. Because the output of SCREEN is unrelated
to the budget, we also use SCREEN as a baseline.

As for streaming repairing, the scroll algorithms Scroll-
DP, Scroll-DPC, Scroll-UG in Sect. 6.1 and the incremen-
tal algorithm IG in Sect. 6.2 will be compared. Similarly,
SCREEN is the baseline since it supports stream data. Besides,
REMIAN [27] repairing with the correlations between various
dimensions is also used as baseline.

7.1.2 Dataset

In this section, the experiments run on five real datasets and
two synthetic datasets, whose speed change distributions are
shown in Fig. 10 and 11.

– STOCK: This dataset records the daily prices of a stock
from 1984-09 to 2010-02, with 12826 data points in total.

123

H. Wang et al.

Fig. 11 Distributions of speed changes over various datasets

Since the data is originally clean, errors are injected fol-
lowing the same line of evaluating the repair effectiveness
[6]. Each data point is picked as an error randomly and
independently. Then, the error points are added by a ran-
dom number following the uniform distribution within
[−θ, θ], where θ is the given error range.

– GPS: This dataset is collected by a person carrying
a smartphone and walking around campus. Instead of
synthetically injecting errors, true errors are naturally
embedded in the dataset. Since we know exactly the path
of walking, a number of 150 dirty points are manually
identified (among total 2,358 clear points in the trajec-
tory). True locations of dirty points are also manually
labeled as ground truth.

– ENGINE: This dataset collects four sequences of a crane,
produced by a heavy industry company, which monitors
theworking status of the device.Themeaningof variables
and their domains are presented inTable 4. The total num-
ber of data points in each sequence is 464. Since no error
and truth are known in advance, this dataset is only used
for regression. We evaluate the prediction of switching-
count by sensor readings with/without repairing. The
switching-count observation serves as the ground truth
of prediction.

– SYNTHETIC: This dataset is generated by ourselves.
First, we generate the ground truth with speed changes
sampled from the probabilistic model5 shown in Fig. 10.
Then, we inject errors into ground truth, following the
same line over STOCK, with error range θ = 5, error
number 100, and data size 500. To perform the pre-
diction experiments, we generate other two determinant
sequences plus one dependent sequence.

– HHAR: This dataset records the acceleration collected
from smartphones [36]. There are 70000 data points in
this dataset. Since there is a small gap in the creation
time and arrival time, this dataset is naturally out of order.

5 Mixed Gaussian distribution whose density function isN (−10, 1) +
N (10, 1).

Errors are randomly injected following the same line over
STOCK,with error range θ = 10 and error number 7000.

– DRIFT: This dataset is generated with Massive Online
Analysis [4], which contains three parts. The speed
changes in the first and third parts are sampled from
{−1, 1} while those in the second part are sampled from
{−1, 0, 1}. The data size of each part is 5000 and 15000
totally. There is a concept shift between the first and sec-
ond parts, as well as a slow drift with width 1000 between
the second and third parts. The speed change varyingwith
time is shown in Fig. 33a. Errors are randomly injected
following the same line over STOCK, with error range
θ = 5 and error number 750.

– ROOM: This dataset records temperature, relative humid-
ity and CO2 in a room [8]. It has four sequences with
data size 8143. We randomly inject errors into the first
sequence temperature, following the same line over
STOCK, with error range θ = 5 and error number 1000.

7.1.3 Environment

We implement all algorithms with Java 8 and run them on a
Java HotSpot(TM) 64-Bit Server VM. The physical machine
is a PC with an Intel(R) Core(TM) i7-9700 CPU and 16GB
RAM.

7.2 Evaluation on repairing as a whole

In our first experiment, we suppose the entire sequence of
STOCK dataset6 is in an independent window and compare
our repairing algorithms with the baseline. Let xtruth be the
ground truth of clean sequence, and xrepair be the repaired
sequence. The repair accuracy is measured by root-mean-
square error (RMS) [21], evaluating how close the repaired
sequence xrepair is to the ground truth xtruth. The lower the
RMS error is, the closer (more accurate) the repair is to the
ground truth. Besides the RMS performance on repairing
accuracy, we also report the corresponding time cost.

7.2.1 Error range

For the original clean STOCK dataset, we have error range
θ = 0 (i.e., no need to repair). To evaluate the repair perfor-
mance, we manually inject errors into the dataset with error
range θ > 0. Figure12 presents the results by varying the
ranges of injected errors from θ = 1 to 10. The error num-
ber is set to 600 and the budget is set to the expectation of
�(x, xtruth), i.e., 12 ×#Error×θ = 300θ . We set d = 1000
for DPL and ε = 2 for DPC.

6 To save experiment time, we only use part of the dataset in some
experiments.

123

Streaming data cleaning based on speed change

Table 4 ENGINE variables Variable Description Domain

DT0 Current of a proportioner called DT0 [200, 800]

Engine-speed Rotate speed of the engine [800, 2000]

Pump-volume Swept volume of the pump [0, 100]

Switching-count Times the crane pumping per minute [3, 27]

2 4 6 8 10
Error Range

0

1

2

3

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

2 4 6 8 10
Error Range

10-4

10-2

100

102

104
Ti

m
e

C
os

t (
s)

Fig. 12 Varying error range θ , over STOCKwith error number 600 and
data size 1282

200 400 600 800
Error Number

0

1

2

3

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

200 400 600 800
Error Number

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 13 Varying error numbers, over STOCK with error range θ = 5
and data size 2564

First, as shown in Fig. 12, it is not surprising that the
larger the error range is, the higher the RMS distance will be
between the truth and repair results.

Second, although with the strong simplification in Eq. 2,
all of our repairing algorithms show much lower RMS than
baseline SCREEN. Among them, SG and UG show a bit higher
RMS than other algorithms, but their time costs are lower.

7.2.2 Error number

Fig. 13 reports the results on various number of errors that are
injected into the data. The error range θ is set to 5. Similarly,
we have δ = 5

2 · #Error , d = 1000 and ε = 2.
Generally, the RMS error increases with the increasing

number of errors. The existing method SCREEN has a much
worseRMSmeasure than all of the other algorithms.Through
a more detailed comparison, DP, DPL and DPC have slightly
lower RMS thanQP, SG and UG, with the cost of greater time
overhead.

Moreover, the time cost of DP is lower than that of DPC
with small error number in Fig. 13. The reason is that with a

2000 4000 6000 8000
Data Size

0

2

4

6

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

2000 4000 6000 8000
Data Size

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 14 Scalability, over STOCK with error range θ = 5 and error
number 400

small error number, the corresponding repair budget δ needed
is small as well. TheDP algorithmwith O(nθ3maxδ) complex-
ity runs faster as well. For the same reason, in Fig. 13, a larger
number of errors lead to larger δ, and thus DP shows higher
time cost (closer to that of DPC).

It’s interesting that DPL runs faster with a large error num-
ber.When δ ≤ d,DPL degenerates to be the same asDP. After
that, we have H = δ/d and the search space of candidates is
reduced to θ/H , which means that a larger number of errors
lead to lower time cost. Therefore, in Fig. 13, the time cost
of DPL rises at first and falls then.

7.2.3 Data size

Figure 14 presents the results over various data sizes. The
budget δ is fixed to 1000 with θ = 5 and #Error = 400. We
set d = 500 and ε = 2.

In Fig. 14, the RMS of SCREEN has risen sharply. On the
contrary, the RMS performance of our algorithms is stable
with different data sizes, which indicates the potential for
dealing with big data issues.

However, the results of DPCwith data size above 7000 are
not marked in Fig. 14 because the programs crash halfway
out of memory. The space complexity of DPC is O(n2θ2max),
which is very sensitive to data size. Thus, DPC is not suitable
to repair in a large window.

7.2.4 Bin width

As shown in Sect. 3.1, we use a binning method to construct
the probability distribution of speed change. Our repairing
algorithms work well when each bin has a sufficiently high
probability. Figure15a gives an example of the probability

123

H. Wang et al.

Fig. 15 Varying bin width over STOCK with error range θ = 5, error
number 600 and data size 1282

500 1000 1500 2000 2500 3000
Budget

1

1.2

1.4

1.6

1.8

2

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

500 1000 1500 2000 2500 3000
Budget

-8000

-6000

-4000

-2000

Lo
g

P
ro

ba
bi

lit
y

Fig. 16 Varying repair cost budget δ from 300 to 3000, over STOCK
with error range θ = 5, error number 600 and data size 1282

1000 1200 1400
Budget

1

1.5

2

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

1000 1200 1400
Budget

-8000

-6000

-4000

-2000

Lo
g

P
ro

ba
bi

lit
y

Fig. 17 Detailed results with δ in the range of 900 to 1500 in Fig. 16

distribution over STOCK with bin width 1. Each bin has a
sufficiently high probability.

Therefore, bin width is an important factor that influences
the construction and thus the final repair. Figure15b shows
the RMS with varying bin width over STOCK. QP, SG and
SCREEN are not plotted because they are unrelated to prob-
ability distribution. The budget is fixed to δ = 1200. When
the bin width is smaller than 4, the robustness of RMSmakes
it not hard to specify the width. On the contrary, if the bin
width is very large, nearly all probability falls into the same
bin, leading to no repair and high RMS.

7.3 Evaluation on budget-adaptive algorithm

7.3.1 STOCK with injected errors

Figure 16 reports the results of STOCK dataset by varying
the repair cost budget δ. If the budget is set too small, the dirty
points cannot be fully repaired, with a higher RMS measure.

The corresponding log probability of repair results is low
as well. On the other hand, if the budget δ is set too large,
the sequence might be over-repaired. The RMS measure is
high as well. Thus, the guideline for setting the proper δ in
Sect. 5.1 is verified again. Note that by further increasing
the budget, the log probability could not increase further in
Fig. 16. The reason is that the repaired sequence reaches the
allowed repair range θ . The corresponding RMS measure
does not change either.

It is worth noting that a range of δ could be considered.
We illustrate a very large range of δ in Fig. 16 in order to
verify the guideline of choosing a proper δ. Once a proper
range of δ is identified, e.g., from 900 to 1500 where the
log probability no longer greatly increases, the repair results
are stable. To demonstrate the robustness, Fig. 17 shows the
resultswith δ in the range of 900 to 1500.As shown, the result
appears to be less sensitive in the chosen range of δ under
the aforesaid guideline. It is helpful for adaptive algorithms
to handle noises.

According to the aforesaid guideline, we propose sev-
eral budget-adaptive algorithms in Sect. 5.3. Table 5 shows
the performance. Referring to Fig. 16, these budget-adaptive
algorithms succeed in selecting proper δ. Especially, by enu-
merating the budget δ over STOCK, the lowest RMS of DP
and DPC are both 1.19, while Adaptive-DP and Adaptive-
DPC achieve the RMS of 1.22 and 1.20, respectively. The
results of adaptive algorithms are very close to the best
ones, which effectively reduces the burden ofmanual budget-
decision.

Moreover, we randomly insert 20% of errors with error
range θ = 5 into the data. Figure18 compares the adap-
tive and optimal RMS and budget. The optimal results are
received by traversing all possible budgets. With different
data sizes, the adaptive algorithms can always find the proper
budget and achieve low RMS close to the optimal one.

7.3.2 GPS with naturally embedded errors

In GPS dataset, the results are similar. Figure19 reports the
RMS measure and log probability of results, by varying the
repair cost budget δ. Similar to Fig. 16, when the budget δ is
small, dirty data might not be sufficiently repaired and thus
the log probability of results is low. By granting more bud-
get (larger δ), while the data could be over-repaired (higher
RMS error), the log probability does not greatly increase fur-
ther. Together with the results in Table 5, the effectiveness
of the budget-determination guideline and budget-adaptive
algorithms is verified again.

7.3.3 ENGINE in real application

Repairing on the real ENGINE dataset can be regarded as a
real application. This dataset includes four attributes, DT0,

123

Streaming data cleaning based on speed change

Table 5 The performance of adaptive algorithms over STOCK, GPS, ENGINE and SYNTHETIC

Stock GPS Engine Synthetic

RMS Time cost RMS Time cost RMS R2 Time cost RMS R2 Time cost

Adaptive-DP 1.22 127s 0.447 17.0min 2.2509 0.79806 20.6min 0.730 1–3.7e−9 7.40s

Adaptive-DPC 1.20 77.7s 0.493 120min 2.2509 0.79806 6.03min 0.831 1–4.7e−9 6.28s

Adaptive-UG 1.38 53.1ms 0.395 233ms 2.2500 0.79822 37.1ms 0.828 1–4.7e−9 9.95ms

SCREEN 2.03 5.96ms 0.496 9.64ms 2.2559 0.79717 2.36ms 1.62 1–1.8e−8 2.36ms

RAW – – – – 2.2513 0.79800 396μs 1.48 1–1.5e−8 304µs

0

0.5

1

R
M

S
 E

rr
or

Adaptive-DP Optimal-DP Adaptive-DPC Optimal-DPC Adaptive-UG Optimal-UG

1200 1500 1800 2100 2400 2700 3000
Data Size

0

1000

2000

3000

B
ud

ge
t

Fig. 18 The comparison between adaptive and optimal RMS/budget
with varying data size

100 200 300 400
Budget

0.2

0.4

0.6

0.8

1

R
M

S
 E

rr
or

DP DPL DPC QP SG UG SCREEN

100 200 300 400
Budget

-9000

-8500

-8000

-7500

Lo
g

P
ro

ba
bi

lit
y

Fig. 19 Varying repair cost budget δ from 40 to 400 over GPS

engine-speed, pump-volume and switching-count. Owing
to the sensor issues, the readings of engine-speed are often
inaccurate and thus need repairing. Since switching-count
is often missing in practice, the application is to predict
switching-count with the multiple linear regression model.

switching-count = γ1 ∗ pump-volume + γ2 ∗ DT0

+ γ3 ∗ engine-speed + γ4

where γ1 to γ4 are parameters to estimate.
To perform the prediction, we use the linear least square

method. To evaluate the application accuracy, two measures
are employed, RMS reporting the closeness of the predicted
values to the observed switching-count values (that are not
missing) and R2 the coefficient of determination [13]. A

500 1000 1500 2000 2500
Budget

10-5

100

105

Ti
m

e
C

os
t (

s)

DP DPL DPC QP SG UG SCREEN RAW

500 1000 1500 2000 2500
Budget

-2700

-2600

-2500

-2400

-2300

-2200

Lo
g

P
ro

ba
bi

lit
y

500 1000 1500 2000 2500
Budget

2.248

2.25

2.252

2.254

2.256

2.258
R

M
S

 E
rr

or

500 1000 1500 2000 2500
Budget

0.797

0.7975

0.798

0.7985

R
2

Fig. 20 Varying repair budget δ over ENGINE

lower RMS error or a higher R2 measure denotes better pre-
diction accuracy.

Figure 20 illustrates the results by varying the budget δ. As
shown, by a proper set of budget δ, the RMS and R2 of most
prediction application improve, compared to RAW without
repairing.

As shown in Fig. 20, the existing SCREEN repair leads to
higher RMS error in prediction. It is not surprising because
the similar results of SCREEN are shown in Fig. 16 over
STOCK and Fig. 19 over GPS. Similarly, the other predic-
tion measure R2 of SCREEN is lower, which verifies again
the results over other datasets.

Besides, Table 5 shows the performance of adaptive algo-
rithms. Adaptive-DP, Adaptive-DPC and Adaptive-UG all
achieve better accuracy than the baselines, indicating that
the adaptive strategy can really select the proper budget.

7.3.4 SYNTHETIC on regression

Similar to those over ENGINE dataset, we evaluate the per-
formance of repairing on multiple linear regression over
SYNTHETIC.

123

H. Wang et al.

200 400 600 800 1000
Budget

10-5

10-4

10-3

10-2

10-1

100

101

Ti
m

e
C

os
t (

s)
DP DPL DPC QP SG UG SCREEN RAW

200 400 600 800 1000
Budget

-4200

-4000

-3800

-3600

Lo
g

P
ro

ba
bi

lit
y

200 400 600 800 1000
Budget

1

1.5

2

2.5

3

3.5

R
M

S
 E

rr
or

200 400 600 800 1000
Budget

1-3e-8

1-2e-8

1-1e-8

1.0
R

2

Fig. 21 Varying repair budget δ over SYNTHETIC

Figure 21 presents the prediction results. SCREEN has the
highest RMS error and other repairing algorithms achieve
much better performance. Moreover, we discover that the
RMSerrors of QP and SG are high and risewith the increasing
budget. The reason is that the speed changes shown in Fig. 10
are not Gaussian-distributed, which destroys the foundation
of QP and SG and leads to poor results. On the other side,
the low RMS errors of DP, DPL, DPC and UG indicate their
universality in probability distribution.

As for the adaptive algorithms, Table 5 shows the similar
results with the above datasets. Especially, the lowest RMS
in Fig. 21 of DP is 0.729, which is very close to the RMS of
Adaptive-DP. Clearly, the adaptive methods perform well in
SYNTHETIC dataset.

7.4 Evaluation on streaming repairing

Next, we evaluate the performance of streaming repairing. To
test the solutions for out-of-order arrival, we use the dataset
HHAR which is naturally out-of-order. Moreover, we also
make the originally in-order datasets STOCK and GPS out
of order, following the method in [35]. First, we randomly
pick up part of the data points (the percentage is called delay
rate) and then add a uniformly distributed random number
(themaximum is called delay time) to the original timestamps
as arrival timestamps. The arrival timestamps of other data
points are still equal to the original ones. Finally, the sequence
is reordered according to arrival timestamps.

7.4.1 Delay

We evaluate the performance of our streaming cleaning algo-
rithms over real datasets STOCKandGPSwith varying delay
rate and delay time. Four evaluation criteria are used in the

0 100 200 300 400 500
Delay Time

1

1.5

2

2.5

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

0 100 200 300 400 500
Delay Time

10-4

10-2

100

102

Ti
m

e
C

os
t (

s)

0 100 200 300 400 500
Delay Time

1

1.5

2

2.5

R
M

S
 E

rr
or

 (O
ut

-o
f-o

rd
er

)

0 100 200 300 400 500
Delay Time

1

1.5

2

2.5

R
M

S
 E

rr
or

 (I
n-

or
de

r)

Fig. 22 Varying delay time from 0 to 500 with delay rate 10% over
STOCK

0 10 20 30
Delay Rate (%)

1

1.5

2

2.5
R

M
S

 E
rr

or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

0 10 20 30
Delay Rate (%)

10-4

10-2

100

102

Ti
m

e
C

os
t (

s)

0 10 20 30
Delay Rate (%)

1

1.5

2

2.5

R
M

S
 E

rr
or

 (O
ut

-o
f-o

rd
er

)

0 10 20 30
Delay Rate (%)

1

1.5

2

2.5

R
M

S
 E

rr
or

 (I
n-

or
de

r)

Fig. 23 Varying delay rate from 0 to 30% with delay time 200 over
STOCK

evaluation. Besides the overall RMS and time cost, we also
report the RMS for in-order and out-of-order points, respec-
tively.

For STOCK dataset (error range θ = 5, error number 600
and data size 1282), thewindow size isW = 30. Importantly,
when the delay rate or delay time is equal to 0, the sequence is
in order. There is no large difference between the results of in-
order andout-of-order sequences, showing that our streaming
algorithms can effectively repair both of them.

In Fig. 22, the RMS of out-of-order points is a bit higher
than in-order points. For scroll algorithms, if out-of-order
points are not in the scroll window, it is repaired with the
different methods from in-order points. Thus, with increas-
ing delay time, more out-of-order data points are out of

123

Streaming data cleaning based on speed change

0 100 200 300 400 500
Delay Time

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

0 100 200 300 400 500
Delay Time

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

0 100 200 300 400 500
Delay Time

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

 (O
ut

-o
f-o

rd
er

)

0 100 200 300 400 500
Delay Time

0.2

0.4

0.6

0.8
R

M
S

 E
rr

or
 (I

n-
or

de
r)

Fig. 24 Varying delay time from 0 to 500 with delay rate 10% over
GPS

0 10 20 30
Delay Rate (%)

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

0 10 20 30
Delay Rate (%)

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

0 10 20 30
Delay Rate (%)

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

 (O
ut

-o
f-o

rd
er

)

0 10 20 30
Delay Rate (%)

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

 (I
n-

or
de

r)

Fig. 25 Varying delay rate from 0 to 30% with delay time 200 over
GPS

window leading to increasing RMS of out-of-order points.
However, because the delay rate is only 10% and RMS of
in-order points is stable, the overall RMS is also stable. In
Fig. 23,RMSof both the out-of-order and in-order data points
increases slightly with delay rate, leading to increasing over-
all RMS.

Among all algorithms, the baseline SCREEN has the worst
RMS as repairing as a whole. In detail, Scroll-DP achieves
the lowest RMS with the largest time cost. Scroll-UG and IG
run much faster at the cost of only a little bit of accuracy.

The results over GPS are shown in Figs. 24 and 25. The
window size is set as W = 300. Similarly, a high delay time
leads to high RMS of out-of-order points and high delay rate
rises the RMS of both points. But in this dataset, IG achieves

30 60 90 120 150
Window Size

1.2

1.4

1.6

1.8

2

2.2

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

30 60 90 120 150
Window Size

10-4

10-2

100

102

Ti
m

e
C

os
t (

s)

Fig. 26 Varying window size from 30 to 150 over STOCK

60 120 180 240 300
Window Size

0.2

0.4

0.6

0.8

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

60 120 180 240 300
Window Size

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 27 Varying window size from 60 to 300 over GPS

20 40 60 80 100
Window Size

1.2

1.3

1.4

1.5

1.6

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

20 40 60 80 100
Window Size

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)
Fig. 28 Varying window size from 20 to 100 over HHAR

the lowest RMS and its performance is stable with different
delay time and rate, showing the superiority of our streaming
algorithms.

7.4.2 Window size

Window size W is a key parameter for our streaming algo-
rithms. For dataset STOCK and GPS, we set the delay time
as 200 and the delay rate as 10%. Figure26 and Fig. 27 show
the performance with varying window size W .

For scroll algorithms, the connection between different
windows is broken. Thus, a larger window leads to more
effective use of local information, which decreases the RMS
at the cost of time. For sliding algorithm IG, increasing the
window size can also decrease RMS a bit.

As for the naturally out-of-order dataset HHAR, Fig. 28
shows the results. SCREEN achieves the highest RMS show-
ing the effectiveness of our algorithms. Moreover, the per-
formance of IG is not sensitive to the window size because
the delay in HHAR is short and rare; thus, a small window
is sufficient.

123

H. Wang et al.

100 200 300 400 500
Number of Data Points

1.2

1.4

1.6

1.8

2

2.2

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

100 200 300 400 500
Number of Data Points

10-4

10-2

100

102

Ti
m

e
C

os
t (

s)
Fig. 29 Varying the number of data points for probability distribution
construction over STOCK

100 200 300 400 500
Number of Data Points

0.3

0.4

0.5

0.6

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

100 200 300 400 500
Number of Data Points

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 30 Varying the number of data points for probability distribution
construction over GPS

100 200 300 400 500
Number of Data Points

1.2

1.3

1.4

1.5

1.6

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

100 200 300 400 500
Number of Data Points

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 31 Varying the number of data points for probability distribution
construction over HHAR

All in all, with proper window size, all of our algorithms
achieve lower RMS than the baseline SCREEN. It illustrates
that streaming data can be effectively repaired by our algo-
rithms.

7.4.3 Probability distribution construction

As shown in Sect. 3.2, we first construct the probability dis-
tribution with some data points and gradually update it when
new data point arrives. Over the same datasets as Sect. 7.4.2,
we evaluate the influence of the number of data points for
probability distribution construction.

In dataset STOCK, we set window size W = 30. The
performance of our streaming algorithms is robust with vary-
ing number of data points as shown in Fig. 29. Clearly, the
robustness greatly simplifies the probability construction.
Meanwhile, similar results are shown in Fig. 30 and Fig. 31
for GPS (W = 300) and HHAR (W = 60), respectively.

0 1e-4 2e-4 5e-4 1e-3 2e-3 5e-3 1e-2
0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

0 1e-4 2e-4 5e-4 1e-3 2e-3 5e-3 1e-2
10-4

10-2

100

102

Ti
m

e
C

os
t (

s)

Fig. 32 Varying decay factor β from 0 to 0.01 over DRIFT

0 5000 10000 15000
Time

0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

(a) Speed Change Probability with Time

ui=-1 ui=0 ui=1

0 5000 10000 15000
Time

0

0.2

0.4

0.6

0.8

1

R
M

S
 E

rr
or

(b) Repairing Comparison

RAW Simple Weighted

Fig. 33 Example of concept shift and drift with Scroll-DPC and β =
0.001

7.4.4 Concept shift and drift

Concept shift and drift are common in streaming data and
harmful to our algorithms. As introduced in Sect. 3.3, our
solution is weighted probability construction. The compar-
ison is between simple (β = 0) and weighted probability
construction over dataset DRIFT.

Figure 32 shows the RMS and time cost of streaming algo-
rithms with varying β. The time cost is little related to β.
As for accuracy, compared to simple construction equally
weights all data points, weighted construction gives more
weight to closer data points, i.e., it focuses more on new dis-
tribution after concept shift or slow drift. Thus, it suffers less
and achieves lower RMS. Meanwhile, too large β limits the
data points for probability construction, which is also harm-
ful to repairing accuracy. Besides, our algorithms outperform
SCREEN a lot.

Figure 33 gives a detailed comparison between simple
and weighted construction, using Scroll-DPC. As shown in
Fig. 33a, there is a concept shift at time 5000 and a slow
drift around time 10000. In Fig. 33b, we plot the RMS every
500 data points. RAW, Simple and Weighted correspond to
no repair, repair with simple probability construction with
equalweight in Sect. 3.2 and repairwithweighted probability
construction in Sect. 3.3, respectively. At time 0-5000, the
RMS is homogeneous between two constructions. After the
concept shift at time 5000, the RMSofweighted construction
is always lower than simple construction, because weighted
construction turns to the new distribution while the simple
one is still trapped by the old one. Similar results are also
shown after the slow drift around time 10000.

123

Streaming data cleaning based on speed change

Table 6 The performance of streaming algorithms compared with
REMIAN over ROOM

ROOM

RMS error Time cost

REMIAN 1.082 31.4ms

Scroll-DP 0.544 12.8s

Scroll-DPC 0.558 15.8s

Scroll-UG 0.344 71.4ms

IG 0.400 46.4ms

1 10 50
Normalization Factor

0.01

0.015

0.02

0.025

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

Scroll-DP Scroll-DPC Scroll-UG IG SCREEN

1 10 50
Normalization Factor

10-4

10-2

100

102

104

Ti
m

e
C

os
t (

s)

Fig. 34 Varying normalization factor over STOCK

7.4.5 Comparison with multi-dimension repairing

As shown in Problem 2, our algorithms maximize the prob-
ability based on speed changes. It captures the inner feature
of a single-dimension time sequence. On the contrary, some
algorithms capture the correlations of the multidimensional
stream for repairing. For example, REMIAN [27] buildsmulti-
variate linear regression models to impute the missing values
and repair the anomalous values in the streaming scenario.

Over multi-dimension dataset ROOM, REMIAN repairs
temperature using other dimensions, while our algorithms
repair temperature alone. Table 6 shows the result of
the comparison. Because the correlations between various
dimensions in dataset ROOM are not strong and REMIAN
ignores the inner feature of a single dimension, the RMS of
our algorithms ismuch lower than REMIAN. Besides, the time
costs of algorithms based on greedy such as Scroll-UG and
IG are comparable to REMIAN.

7.4.6 Normalization

Figure 34 shows the results of repairing with normalization
in the streaming scenario. It is not surprising that the time
cost is greatly reduced with a larger normalization factor H ,
i.e., fewer candidates considered. Meanwhile, compared to
no normalization (H = 1), there is little accuracy loss with
a moderately large factor, e.g., H ≤ 10.

7316 7318 7320 7322 7324 7326
Time

365

370

375

380

V
al

ue

(a) Case 1

7300 7302 7304 7306 7308
Time

365

370

375

380

V
al

ue

(b) Case 2

Observation Truth Adaptive-DP Adaptive-DPC Adaptive-UG SCREEN AR

0 2 4 6 8 10
Data Point

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

(c) Probability of Case 1

0 2 4 6 8
Data Point

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

(d) Probability of Case 2

Fig. 35 Case study on STOCK

455 460 465 470 475 480
X

175

180

185

190
Y

(a) Case 1

155 160 165 170
X

204

205

206

207

208

Y

(b) Case 2

Observation Truth Adaptive-DP Adaptive-DPC Adaptive-UG SCREEN AR

0 2 4 6 8 10
Data Point

0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

(c) Probability of Case 1

0 2 4 6 8 10
Data Point

0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

(d) Probability of Case 2

Fig. 36 Case study on GPS trajectory

7.5 Case study

7.5.1 Repair case over STOCK and GPS

To show the effectiveness of our repairing methods, wemake
a case study on repairing stock data. We compare our pro-
posal with an outlier detection method, autoregressive model
AR [20]. With the ARmodel learned on all data points, it first
detects the observed values whose difference from the pre-
dicted value is larger than the threshold and identifies them
as the outlier. Then, they are amended to predicted values.

Figure 35a shows an example of inserted errors, while
Fig. 35c shows the probability of the observed speed change
before and after each point. Since the inserted errors are rare
in sequence, the probability of data points 1–3 and 6–8 is
quite low and our adaptive algorithms successfully repair
them. Besides, Fig 35b shows a case of error-in-the-system.

123

H. Wang et al.

On the back of positive news, stock price rises rapidly. Since
such a rise and fall of stock price may occur multiple times,
the probability shown in Fig 35d is higher than Case 1. Thus,
the sequence is not (or slighted) modified.

Similarly, we also make a similar study on repairing
GPS trajectory. Figure36a shows a case of error-in-the-
measuring-instrument, while Fig. 36c shows the probability.
Due to the sensor failures, the observed trajectory (black
line, but covered by the blue line) is far from the ground
truth. Therefore, based on the distribution of speed changes,
the corresponding probabilities are very low, such as data
points 6–8 in Fig. 36c. Figure36b shows a case of error-in-
the-system. Because there is an obstacle in front of the road,
every walker has to change the path and bypass it. Different
from the speed changes in error-in-the-measuring-instrument
that rarely occur, every walker behaves similarly in this place
and thus leads to a relatively higher probability, as illustrated
in data points 3–8 in Fig. 36d.

For Case 1 shown in Fig. 36a, our methods repair the tra-
jectory and make it closer to the ground truth. Unfortunately,
AR fails to identify the dirty values but modifies the clean
values by mistake, since it cannot capture the information
on speed changes. For Case 2 shown in Fig. 36b, all algo-
rithms do not (or slightly) repair the sequence. In summary,
while both methods lean to leave the error-in-the-system
unchanged in (b), our proposals repair more accurately the
error-in-the-system in (a).

Although, over STOCK and GPS, we observe that the
error-in-the-system is more frequent with a higher proba-
bility in the distribution, while the error-in-the-measuring-
instrument occurs randomly leading to a lower probability,
it might not be the case in some other practices. In that
case, we have no idea which likelihood is higher, but we
can assume that the distributions are different. For instance,
we may assume that the distributions are Gaussian mixtures
in both cases, and each one is governed by different param-
eters. In that context, extra knowledge could be employed to
further distinguish which one is error-in-the-system. Since
we do not have an assumption of Gaussian distribution in
this study, we leave this interesting direction for future work.

7.5.2 Confusion matrix over GPS

From the above repair cases, we verify the conclusion in
Sect. 1. SCREEN is good at detecting large spike errors rather
than small errors. Meanwhile, over-repairing of smooth-
ing methods is indicated in Sect. 1 as well. A statistical
result in Table 7 also confirms them, where TP/FN is for
errors with/without repairing and FP/TN is for correct data
with/without repairing.

With a very high FP rate, smoothing method SMA mod-
ifies almost all data points. On the contrary, SCREEN has
the lowest FP rate among all algorithms, because it only

repairs the large spikeswhich aremore likely to be errors.Our
algorithms can detect both small and large errors, and avoid
over-repairing with adaptive budget determination. There-
fore, F-score shows the much better overall performance of
our algorithms.

8 Related work

8.1 Constraint-based repairing

Constraint is important in data repairing. Based on various
constraints, it is able to find and repair the errors. For event
sequences, the constraints can be extracted from the flow
chart [32, 40, 41]. Meanwhile, we can repair the rational
data based on functional dependencies [26].

For time series, sequential dependencies proposed in [17]
consider the range of value changes between two consecutive
data points, while the distances on timestamps between data
points are not involved. Even further, SCREEN [35] consid-
ers more universal speed constraints. In this sense, sequential
dependencies could be interpreted as a special class of speed
constraints declared on time series with fixed time intervals.
Moreover, [45] repairs with the variance constraints in a win-
dow.

However, with any constraint, the constraint-based repair-
ing identifies and repairs only theviolations to the constraints,
without indicating the most likely answers among all valid
repairs that satisfy the constraints.

8.2 Statistic-based repairing

Correcting data with the statistical features extracted from
data is an important direction of data repairing. Some works
repair the rational data with the statistical features [23, 28,
44]. Due to the difference between relational data and our
studied sequential data, the abovemethods are not applicable.

Similarly, some statistic-basedmethods seek data features
from time series. IMR [49] builds ARXmodels from a small
amount of labeled data. With unlabeled time sequences, our
proposalmodels the probability of speed changes and obtains
accurate repair results by further revealing the probability of
repairs.

8.3 Stream processing

Stream processing is necessary in edge computing [43], real-
time applications [37] and other aspects. Some frameworks
are developed to work for this scenario [2, 29], which focus
on distributed systems, high performance, and high relia-
bility. Besides, some works design specialized incremental
algorithms [35] or use traditional incremental algorithms to
solve the specific problems [39]. Inspired by these ideas, we

123

Streaming data cleaning based on speed change

Table 7 The confusion matrix
over GPS

TP rate TN rate FP rate FN rate Precision Recall F-Score

Adaptive-DP 0.0197 0.9243 0.0460 0.0100 0.2995 0.6629 0.4126

Adaptive-DPC 0.0143 0.9657 0.0047 0.0153 0.7544 0.4831 0.5890

Adaptive-UG 0.0123 0.9673 0.0030 0.0173 0.8043 0.4157 0.5481

SCREEN 0.0023 0.9697 0.0007 0.0273 0.7778 0.0787 0.1429

SMA [7] 0.0263 0.3497 0.6207 0.0033 0.0407 0.8876 0.0778

design streaming algorithms based on scroll or sliding win-
dows,which achieve linear computing efficiencywith limited
memory space.

9 Conclusions

In this study, we extend the conference versionwhich focuses
on repairing as a whole to the streaming scenario.We capture
the challenges of repairing stream data and propose (1) a
method of dynamic probability construction, (2) a solution
of adaptive budget determination, and (3) streaming repairing
algorithms based on scroll and slidingwindows. Experiments
on several real datasets demonstrate the better performance
of our proposal, in both repairing and application accuracy,
compared to the state-of-the-art constraint-based repairing.

Acknowledgements This work is supported in part by the National
Natural Science Foundation of China (62072265, 62102023, 62021002,
62232005),NationalKeyResearch andDevelopmentPlan (2021YFB3300500,
2019YFB1705301), Beijing National Research Center for Informa-
tion Science and Technology (BNR2022RC01011), and Alibaba Group
through Alibaba Innovative Research (AIR) Program. Shaoxu Song
(https://sxsong.github.io/) is the corresponding author.

References

1. Anderson, C.: The Long Tail. Harper Collins, USA (2008)
2. ASF: Apache storm (2020). http://storm.apache.org/
3. Berger, V.W., Zhou, Y.: Kolmogorov–Smirnov test: Overview.

Statistics reference online, Wiley statsref (2014)
4. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H.,

Jansen, T., Seidl, T.: MOA: massive online analysis, a framework
for stream classification and clustering. In: Proceedings of the First
Workshop onApplications of Pattern Analysis,WAPA 2010, Cum-
berland Lodge, Windsor, UK, Sept 1–3, 2010, JMLR Proceedings,
vol. 11, pp. 44–50. JMLR.org (2010)

5. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review
on outlier/anomaly detection in time series data. ACM Comput.
Surv. 54(3), 56:1-56:33 (2021)

6. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based
model and effective heuristic for repairing constraints by value
modification. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2005, Baltimore,
Maryland, USA, June 14-16, 2005, pp. 143–154. ACM (2005)

7. Brillinger, D.R.: Time Series: Data Analysis and Theory, vol. 36.
Siam (2001)

8. Candanedo, L.M., Feldheim, V.: Accurate occupancy detection of
an office room from light, temperature, humidity and co2 measure-
ments using statistical learning models. Energy Build (2016)

9. Cheung, Y.W., Lai, K.S.: Lag order and critical values of the aug-
mented dickey-fuller test. J. Bus. Econ. Stat. 13(3), 277–280 (1995)

10. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: maintaining
closed frequent itemsets over a stream sliding window. In: Pro-
ceedings of the 4th IEEE International Conference on DataMining
(ICDM 2004), 1–4 Nov 2004, Brighton, UK, pp. 59–66. IEEE
Computer Society (2004)

11. Dasu, T., Loh, J.M.: Statistical distortion: consequences of data
cleaning. Proc. VLDB Endow. 5(11), 1674–1683 (2012)

12. Ding, Z., Fei, M.: An anomaly detection approach based on iso-
lation forest algorithm for streaming data using sliding window.
IFAC Proc. Vol. 46(20), 12–17 (2013)

13. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley
Series in Probability and Mathematical Statistics, 2nd edn. Wiley
(1981)

14. Fang, C., Song, S., Mei, Y.: On repairing timestamps for regular
interval time series. Proc. VLDB Endow. 15(9), 1848–1860 (2022)

15. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with
drift detection. In:Advances inArtificial Intelligence—SBIA2004.
In: 17th Brazilian Symposium on Artificial Intelligence, São Luis,
Maranhão, Brazil, Sept 29–Oct 1, 2004, Proceedings, Lecture
Notes in Computer Science, vol. 3171, pp. 286–295. Springer
(2004)

16. Gardner, E.S., Jr.: Exponential smoothing: the state of the art-part
ii. Int. J. Forecast. 22(4), 637–666 (2006)

17. Golab, L., Karloff, H.J., Korn, F., Saha, A., Srivastava, D.: Sequen-
tial dependencies. Proc. VLDB Endow. 2(1), 574–585 (2009)

18. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in
continuous queries over data streams. In: Proceedings of 29th
International Conference on Very Large Data Bases, VLDB 2003,
Berlin, Germany, Sept 9–12, 2003, pp. 500–511. Morgan Kauf-
mann (2003)

19. Gu, J., Li, W., Cai, X.: The effect of the forget-remember mecha-
nism on spreading. Eur Phys J B 62(2), 247–255 (2008)

20. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and
Practice. OTexts (2018)

21. Jeffery, S.R., Garofalakis, M.N., Franklin, M.J.: Adaptive cleaning
for RFID data streams. In: Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September
12–15, 2006, pp. 163–174. ACM (2006)

22. Karp, R.M.: Reducibility among combinatorial problems. In:
Proceedings of a symposiumon theComplexity of Computer Com-
putations, held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA, The IBM
Research Symposia Series, pp. 85–103. Plenum Press, New York
(1972)

23. Krishnan, S., Wang, J., Wu, E., Franklin, M.J., Goldberg, K.:
Activeclean: Interactive data cleaning for statistical modeling.
Proc. VLDB Endow. 9(12), 948–959 (2016)

123

https://sxsong.github.io/
http://storm.apache.org/

H. Wang et al.

24. Li, X., Dong, X.L., Lyons, K.,Meng,W., Srivastava, D.: Truth find-
ing on the deep web: Is the problem solved? Proc. VLDB Endow.
6(2), 97–108 (2012)

25. Liu,M., Li,M.,Golovnya,D.,Rundensteiner, E.A.,Claypool,K.T.:
Sequence pattern query processing over out-of-order event streams.
In: Proceedings of the 25th International Conference on Data Engi-
neering, ICDE 2009, March 29 2009–April 2 2009, Shanghai,
China, pp. 784–795. IEEE Computer Society (2009)

26. Livshits, E., Kimelfeld, B., Roy, S.: Computing optimal repairs for
functional dependencies. ACM Trans. Database Syst. 45(1), 4:1-
4:46 (2020)

27. Ma, Q., Gu, Y., Lee, W., Yu, G., Liu, H., Wu, X.: REMIAN:
real-time and error-tolerant missing value imputation. ACMTrans.
Knowl. Discov. Data 14(6), 77:1-77:38 (2020)

28. Mayfield, C., Neville, J., Prabhakar, S.: ERACER: a database
approach for statistical inference and data cleaning. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6–10,
2010, pp. 75–86. ACM (2010)

29. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed
stream computing platform. In: ICDMW 2010, The 10th IEEE
International Conference on Data Mining Workshops, Sydney,
Australia, 13 Dec 2010, pp. 170–177. IEEE Computer Society
(2010)

30. Qi, Z., Wang, H., Wang, A.: Impacts of dirty data on classification
and clustering models: an experimental evaluation. J. Comput. Sci.
Technol. 36(4), 806–821 (2021). https://doi.org/10.1007/s11390-
021-1344-6

31. Song, K.S.: Circuit for generating a scroll window signal in digital
image apparatus (1992)

32. Song, S., Cao, Y., Wang, J.: Cleaning timestamps with temporal
constraints. Proc. VLDB Endow. 9(10), 708–719 (2016)

33. Song, S., Li, C., Zhang, X.: Turn waste into wealth: On simulta-
neous clustering and cleaning over dirty data. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, Aug 10–13,
2015, pp. 1115–1124. ACM (2015)

34. Song, S., Zhang, A.: Iot data quality. In: CIKM’20: The 29th ACM
International Conference on Information and Knowledge Manage-
ment, Virtual Event, Ireland, Oct 19–23, 2020, pp. 3517–3518.
ACM (2020)

35. Song, S., Zhang, A., Wang, J., Yu, P.S.: SCREEN: stream data
cleaning under speed constraints. In: Proceedings of theACMSIG-
MOD International Conference onManagement ofData, SIGMOD
2015, Melbourne, Victoria, Australia, May 31–June 4, 2015, pp.
827–841. ACM (2015)

36. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T.S., Kjærgaard,
M.B., Dey, A.K., Sonne, T., Jensen, M.M.: Smart devices are dif-
ferent: Assessing andmitigatingmobile sensing heterogeneities for
activity recognition. In: Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, SenSys 2015, Seoul,
South Korea, Nov 1–4, 2015, pp. 127–140. ACM (2015)

37. Ulm, G., Smith, S., Nilsson, A., Gustavsson, E., Jirstrand, M.:
OODIDA: on-board/off-board distributed real-time data analytics
for connected vehicles. Data Sci. Eng. 6(1), 102–117 (2021)

38. Vorburger, P., Bernstein, A.: Entropy-based concept shift detection.
In: 6th International Conference on Data Mining (ICDM’06), pp.
1113–1118. IEEE (2006)

39. Wang, H., Chen, S., Gong, W.: Mobility improves accuracy: Pre-
cise robot manipulation with COTS RFID systems. In: 19th IEEE
International Conference on Pervasive Computing and Communi-
cations, PerCom 2021, Kassel, Germany, March 22–26, 2021, pp.
1–10. IEEE (2021)

40. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured
event logs: a graph repair approach. In: 31st IEEE International
Conference on Data Engineering, ICDE 2015, Seoul, South Korea,
April 13–17, 2015, pp. 30–41. IEEE Computer Society (2015)

41. Wang, J., Song, S., Zhu, X., Lin, X.: Efficient recovery of missing
events. Proc. VLDB Endow. 6(10), 841–852 (2013)

42. Wang, J., Wang, J., Guo, Y.: Scroll-window recursive subspace
identification methods for closed-loop system based on orthogonal
projection. Inf. Control 43(1), 56–62 (2014)

43. Xhafa, F., Kilic, B., Krause, P.: Evaluation of iot stream process-
ing at edge computing layer for semantic data enrichment. Future
Gener. Comput. Syst. 105, 730–736 (2020)

44. Yakout, M., Berti-Équille, L., Elmagarmid, A.K.: Don’t be scared:
use scalable automatic repairing with maximal likelihood and
bounded changes. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22–27, 2013, pp. 553–564. ACM (2013)

45. Yin, W., Yue, T., Wang, H., Huang, Y., Li, Y.: Time series cleaning
under variance constraints. In: Database Systems for Advanced
Applications—DASFAA 2018 International Workshops: BDMS,
BDQM, GDMA, and SeCoP, Gold Coast, QLD, Australia, May
21–24, 2018, Proceedings, Lecture Notes in Computer Science,
vol. 10829, pp. 108–113. Springer (2018)

46. Yu, Y., Zhu, Y., Li, S., Wan, D.: Time series outlier detection based
on sliding window prediction. Math. Probl. Eng. 2014 (2014)

47. Yuan, H., Li, G.: A survey of traffic prediction: from spatio-
temporal data to intelligent transportation. Data Sci. Eng. 6(1),
63–85 (2021). https://doi.org/10.1007/s41019-020-00151-z

48. Zhang, A., Song, S.,Wang, J.: Sequential data cleaning: a statistical
approach. In: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26–July 01, 2016, pp. 909–924. ACM (2016)

49. Zhang, A., Song, S., Wang, J., Yu, P.S.: Time series data cleaning:
from anomaly detection to anomaly repairing. Proc. VLDBEndow.
10(10), 1046–1057 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1007/s11390-021-1344-6
https://doi.org/10.1007/s11390-021-1344-6
https://doi.org/10.1007/s41019-020-00151-z

	Streaming data cleaning based on speed change
	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Problem statement
	2.1 Preliminaries
	2.2 Problem of repairing as a whole
	2.3 Hardness
	2.4 Streaming repair problem
	2.5 Normalization

	3 Probability distribution construction
	3.1 Construction on dirty sequence
	3.2 Simple distribution construction
	3.3 Weighted distribution construction
	3.4 Clarification on distribution assumption

	4 Repair in a window as a whole
	4.1 Dynamic programming algorithms
	4.2 Universal greedy algorithm
	4.2.1 Probability gain
	4.2.2 Universal greedy

	5 Budget determination
	5.1 Intuition
	5.2 Formalization
	5.3 Budget-adaptive algorithms
	5.3.1 Adaptive-DP
	5.3.2 Adaptive-DPC
	5.3.3 Adaptive-UG

	6 Repair with moving windows
	6.1 Scroll algorithm
	6.2 Sliding algorithm

	7 Experimental evaluation
	7.1 Experiment setup
	7.1.1 Algorithm
	7.1.2 Dataset
	7.1.3 Environment

	7.2 Evaluation on repairing as a whole
	7.2.1 Error range
	7.2.2 Error number
	7.2.3 Data size
	7.2.4 Bin width

	7.3 Evaluation on budget-adaptive algorithm
	7.3.1 STOCK with injected errors
	7.3.2 GPS with naturally embedded errors
	7.3.3 ENGINE in real application
	7.3.4 SYNTHETIC on regression

	7.4 Evaluation on streaming repairing
	7.4.1 Delay
	7.4.2 Window size
	7.4.3 Probability distribution construction
	7.4.4 Concept shift and drift
	7.4.5 Comparison with multi-dimension repairing
	7.4.6 Normalization

	7.5 Case study
	7.5.1 Repair case over STOCK and GPS
	7.5.2 Confusion matrix over GPS

	8 Related work
	8.1 Constraint-based repairing
	8.2 Statistic-based repairing
	8.3 Stream processing

	9 Conclusions
	Acknowledgements
	References

